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The same mutation often does not lead
to the same phenotype in different indi-
viduals due to other genetic variants
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through gain- or loss-of-function
mutations in genes involved in related
cellular functions.

Our ability to predict phenotypes relies
on expanding our knowledge of the
complex networks of genetic interac-
tions underlying traits; however, the
structure and complexity of the net-
work itself may be variable across
individuals.

Deeper understanding of the conser-
vation and variability of functional
genetic networks among individuals
may be key to trait prediction.
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The phenotypic consequences of a given mutation can vary across individuals.
This so-called background effect is widely observed, from mutant fitness of
loss-of-function variants in model organisms to variable disease penetrance
and expressivity in humans; however, the underlying genetic basis often
remains unclear. Taking insights gained from recent large-scale surveys of
genetic interaction and suppression analyses in yeast, we propose that the
genetic network context for a given mutation may shape its propensity of
exhibiting background-dependent phenotypes. We argue that further efforts
in systematically mapping the genetic interaction networks beyond yeast will
provide not only key insights into the functional properties of genes, but also a
better understanding of the background effects and the (un)predictability of
traits in a broader context.

Genetic Background and the (Un)predictability of Traits
A particular mutation in a given gene often leads to different phenotypes in different individuals.
This observation dates back almost to the beginning of modern genetics [1,2], and yet
geneticists are still challenged with understanding specific genotype–phenotype relationships
[3]. In many human monogenic disorders, individuals carrying a well-defined mutation in a
disease gene frequently show variable penetrance and expressivity in terms of clinical symp-
toms, severity, and age of onset [4–9]. While multiple factors can contribute to this effect, the
specific makeup of an individual’s genome, or the genetic background, is increasingly recog-
nized as a primary source of variable phenotypic expression [3,10–13]. In fact, when individual
background is considered, ‘simple’ traits, such as those primarily caused by one or a few
genes, can actually be considered as genetically complex [4,14–17].

The phenotypic consequence of a primary mutation can be influenced by genome variants
termed ‘modifiers’, which can aggravate or mask the expected phenotypic outcome. To date,
modifier genes have been identified for some of the best-studied monogenic diseases,
including cystic fibrosis and sickle cell anemia [8,16,18]. However, systematic identification
of genetic modifiers in humans is hampered by the low population frequency of rare traits and
diseases, a lack of pedigree data, and other uncontrolled environmental confounders [4]. By
contrast, genetically tractable model organisms are particularly suitable for systematic
approaches with precise experimental controls. Recently, large-scale reverse genetic screens
revealed the extensive landscape of background-specific phenotypic expression across vari-
ous model systems including yeasts [19,37], nematodes [20,21], drosophila [13,22,23], mice
[24,25], and human cell lines [26–28]. These studies revealed loss-of-function mutations that
cause a severe fitness defect in one individual, but no discernable defect in another due to
background-specific genetic modifiers.
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Precise phenotypic prediction for a given individual essentially requires the knowledge of all
primary variants and their modifiers that collectively drive the phenotypic outcome. Here, we
consider recent large-scale genetic interaction studies in yeast to discuss the molecular basis of
genetic modification. We focus on gene essentiality as a conditional phenotype and discuss
how the complexity of a genetic interaction network, for example, the number of interactions
observed between a primary variant and its potential modifiers, could shape the propensity of
the phenotypic outcome. We argue that further understanding of the genetic interaction
network across different yeast individuals and beyond may hold a key to unraveling the
molecular and genetic mechanisms of background effects that lead to the apparent ‘unpre-
dictability’ of traits.

Genetic Modifiers as Part of Functional Networks Related to Primary
Mutations
Although it has only recently become possible to trace modifier genes in natural populations,
experiments to map modifiers for a defined primary variant in a controlled experimental system
have been common practice for many genetic studies. For example, genetic interactions,
where the combined effect of different mutations deviates from the expected effect of each
mutation on its own, have been studied systematically in the budding yeast, Saccharomyces
cerevisiae. In the most comprehensive analysis so far, loss-of-function alleles for nearly all yeast
genes were combined, using an automated form of yeast genetics called synthetic genetic
array (SGA) analysis, to generate approximately 18 million double-mutant strains [29–31].
Genetic interactions were scored by measuring colony size as a proxy for cell fitness: a negative
genetic interaction occurs when a double mutant has a more severe fitness defect than
expected, while a positive genetic interaction is scored when the double mutant is more fit
than expected [32]. Synthetic lethality is an extreme negative genetic interaction in which
mutations in two different genes, neither of which is lethal on its own, combine to cause a lethal
double-mutant phenotype. By contrast, genetic suppression is an extreme positive interaction,
which occurs when the phenotype caused by a mutated gene is rescued by mutation in another
gene [33]. Using the colony size read-out, approximately 500 000 negative genetic interactions
and approximately 350 000 positive double-mutant genetic interactions have been cataloged,
enabling visualization of the first comprehensive genetic network for any model system [31].

The global yeast network revealed that genetic interactions are more likely to occur among
functionally related genes [31], a feature that is likely shared between a primary mutation and its
modifiers within individuals of an outbred population. Indeed, recent large-scale analyses of
genetic suppression revealed the same trend [34]. Compared with the positive genetic
interactions mapped by large-scale SGA analysis, genetic suppression, which is often driven
by spontaneous mutations, is not limited to loss-of-function alleles, but can also reflect gain-of-
function mutations, changes in chromosome copy number, or gene dosage [34–36]. A recent
analysis combined literature curation and experimental analysis to map approximately 2500
unique pairwise suppression interactions for approximately 1000 hypomorphic (partial loss-of-
function) query alleles in yeast [34]. This subnetwork of suppression interactions showed
significant overlap with the global genetic interaction network mapped by SGA analysis
[24]. Notably, genes pairs on the suppression network displayed a closer functional relatedness
than for gene pairs on the global SGA network [27].

Intuitively, it is not surprising that modifiers and the primary mutation tend to be functionally
related. Indeed, genes scarcely work as discrete units, but often operate in functional modules
that coordinate with other such modules to ensure cellular processes. Thus, with a general
understanding of the functional wiring diagram of cells and organisms, the prediction of
2 Trends in Genetics, Month Year, Vol. xx, No. yy
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modifiers should be achievable to a reasonable degree, especially when the primary mutation
involves a loss-of-function allele.

Network Connectivity and the Modifiability of Traits
Because genes tend to interact with functionally related genes, often in the same general
bioprocess [31,34], an understanding of gene function may provide insight into the genetic
background effect. However, not all phenotypes are modifiable. In fact, a recent study tested
the ‘evolvability’ of all yeast essential genes in the reference S288c strain background and
revealed that a subset of approximately 9% of yeast essential genes can rapidly acquire
secondary mutations and escape essentiality [35]. In this study, a large number of meiotic
offspring were generated for approximately 1000 different diploid S288c strains, each carrying
a heterozygous deletion of an essential gene. As essential genes are required for viability, half of
the haploid offspring carrying the deletion alleles should be nonviable. However, haploid
individuals derived from 88 essential gene deletion strains were able to grow after a short
period through acquisition of chromosomal aberrations, such as aneuploidies and segmental
duplications. This result enabled classification of the yeast genome into evolvable essential
genes, non-evolvable essential genes, and non-essential genes, which facilitated an analysis of
the shared molecular properties of these three gene sets. Interestingly, within the global yeast
protein–protein interaction network, proteins encoded by non-evolvable essential genes had
the highest number of interacting partners, whereas the evolvable essential genes tend to
present an intermediate number of interactions, contrasting to non-essential genes, which have
the least protein interactions [35]. Thus, the evolvable essential genes displayed a protein
interaction degree that was intermediate, between that of the non-evolvable essential genes
and the non-essential genes.

To further investigate the properties of evolvable essential genes, we analyzed the genetic
interaction degrees, defined as the number of partners on the global yeast genetic interaction
network [31], for all three classes of genes mentioned above. As for the protein network, there is
a gradient of connectivity with non-essential genes showing relatively few connections, evolv-
able essential genes showing an intermediate connectivity, and non-evolvable essential genes
showing the highest connectivity (Figure 1A). These trends were evident whether negative and
positive genetic interactions were considered separately or as a combined data set. We also
analyzed the percentage of interacting partners that functionally co-annotated with each
primary gene, and found that evolvable essential genes and their genetic partners had a
significantly higher co-annotation rate than non-essential genes, and significantly lower co-
annotation rate than non-evolvable essential genes (Figure 1B). These trends suggest that
mutations in a gene functioning in a highly connected genetic interaction network (i.e., defined
by the high number of genetic interactions) would cause a strong functional perturbation, one
that is not easily suppressed by a relatively small number of modifiers. In other words, the
complexity of the genetic network in which a primary mutation participates may constrain its
genetic modifiability.

Genetic network complexity may also influence the effects of genetic background in two
individuals sampled from a natural outbred population. Specifically, mutation in a gene involved
in a highly complex genetic network may be less likely to exhibit different phenotypes in different
individuals due to constraints imposed by the network. By contrast, mutations in less-con-
nected genes may cause more background-specific phenotypes, as relatively few modifier loci
would be required to accentuate or suppress the defect in the primary gene. To test this
hypothesis, we compiled a list of 81 conditional essential genes across six different genetic
backgrounds in S. cerevisiae (see Table S1 in the Supplemental Information online) [35]. These
Trends in Genetics, Month Year, Vol. xx, No. yy 3
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Figure 1. Genetic Interaction Degree and Functional Co-annotation of Interacting Genes. The number of genetic interactions observed for non-essential,
evolvable, and non-evolvable gene categories (A) and non-essential, conditional, and essential gene categories (C) are shown in boxplots. The types of interaction are
color coded and the numbers of observations are indicated at the bottom of each plot. For each gene category, the corresponding functional co-annotation rate and
distribution are presented (B and D). One-tailed t-test has been performed for all pairwise comparison between assigned gene categories and percentages of functional
co-annotation. The significance levels are indicated on the graTel.: Significance levels: n.s (P > 0.1), � (0.05 < P < 0.1), * (0.005 < P < 0.05), ** (0.0005 < P < 0.005),
*** (P < 0.0005). Data compiled from [31,35].
genes are classified as conditional essential because they are required for viability in at least one
but not all of the considered backgrounds. We used this analysis to organize the yeast genome
into three different groups: non-essential, conditional essential, and essential gene categories.
In accordance with our hypothesis, conditional essential genes showed intermediate interac-
tion degrees and functional co-annotation rates compared with non-essential (lowest degree,
lowest co-annotation rate) and essential genes (highest degree, highest co-annotation rate;
Figure 1C,D).

Overall, these analyses suggest that the background effect on phenotypic expression, at least
in the case of gene essentiality in yeast, is not only influenced by the presence of background-
specific modifiers, but may also be constrained by the complexity of the underlying genetic
network.

Genetic Network Complexity and the Background Effects of Monogenic
Variants in Natural Yeast Populations
Natural genetic variation in yeast has not only been assessed using defined isogenic mutant
collections, but also by assessing variable phenotypic expression at the population level
4 Trends in Genetics, Month Year, Vol. xx, No. yy
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[15,38–40]. In a recent systematic effort, a species-wide survey identified Mendelian traits
across 41 crosses and 30 stress conditions [15]. In total, 1105 cross–trait combinations were
analyzed, of which 8.9% (98/1105) were Mendelian, resulting from a single causal variant.
Interestingly, the identified Mendelian cases can be divided into ‘stable’ and ‘modifiable’ based
on the inheritance patterns across the population. Stable Mendelian traits, dominated by genes
related to the osmotic stress condition, consistently displayed monogenic inheritance across all
crosses tested. By contrast, modifiable Mendelian traits identified by the response to antifungal
drugs displayed unexpected inheritance patterns, with increased genetic complexity ranging
from a single modifier to more than three modifiers depending on the genetic background [15].

The primary, causal, monogenic variants in these cases have been identified: variation in ENA1,
which encodes a P-type ATPase sodium pump, caused the stable phenotypic variation in the
osmotic stress condition, while variation in the ‘transcription regulator of pleiotropic drug-
resistance’ gene PDR1 explained the modifiable or variable response to drugs. We examined
the yeast global genetic interaction data, and discovered that ENA1 has a low network
complexity, with a combined interaction degree of 31. By contrast, PDR1 has a combined
interaction degree of 246, indicating a medium to high network complexity. Albeit the network
complexity presented here could be biased, because the genetic interactions were mapped
using loss-of-function mutations in a different environmental context and strain background,
these observations support our hypothesis that the phenotypic modifiability of a monogenic
mutation may be shaped by the complexity of the underlying genetic network. While more
systematic studies are required, the general rules concerning the genetic principles of pheno-
typic modifiability do seem to apply for natural genetic variants as well.

Yeast Genetic Network Complexity and Conservation of Gene Essentiality in
Other Organisms
In addition to S. cerevisiae, genome-wide screens of loss-of-function mutations have been
recently completed in other model organisms, including fission yeast (Schizosaccharomyces
pombe) [41,42], fly (Drosophila melanogaster) [43], worm (Caenorhabditis elegans) [44], and
mouse (Mus musculus) [45], as well as several human cell lines [26–28]. These screens allowed
global annotations of gene essentiality across multiple species spanning hundreds of millions of
years of evolution. To further investigate how genetic interaction network properties impact
gene function and evolution, we compiled a list of 3408 ortholog groups consisting of
orthologous genes from at least one of the aforementioned species relative to the correspond-
ing S. cerevisiae ortholog from the InParanoid database [46] (Figure 2A and Table S2). Each
ortholog group is further categorized by the number and identity of the species that shared the
same ortholog (Figure 2A). For each gene in each ortholog group, the essentiality annotation
was obtained from the Online GEne Essentiality (OGEE) database for the corresponding
species [47]. In addition to essential (E) and non-essential (NE), we also defined genes as
conditional essential (E/NE), if multiple data sets gave different essentiality annotations for the
same gene; and nondetermined (ND) in the case of missing data (Table S2). Using annotations
at the gene level, we further assigned an essentiality qualifier to the entire ortholog group: an
ortholog group is considered as ‘non-essential’ if all members are consistently annotated as
non-essential across different species. By contrast, if all members are consistently annotated
as essential, the ortholog group is annotated as ‘essential’. The qualifier ‘variable’ is then
assigned for cases where different essentialities have been observed across different species
or different data sets within the same species. Using these criteria, we categorized all ortholog
groups into ‘essential’, ‘non-essential’, and ‘variable’ by different levels of conservation, that is,
the number of species observed in each ortholog group (Figure 2B).
Trends in Genetics, Month Year, Vol. xx, No. yy 5
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Figure 2.

(Figure legend continued on the bottom of the next page.)

The Impact of Genetic Network Complexity on the Evolution of Gene Essentiality in Orthologs across Six Distantly Related Species. (A)
Ortholog conservations across six species. A list of 3408 Saccharomyces cerevisiae genes and their orthologs from human (Homo sapiens), mouse (Mus musculus), fly
(Drosophila melanogaster), worm (Caenorhabditis elegans), and fission yeast (Schizosaccharomyces pombe) was compiled from the InParanoid database [46]. The
gene set sizes correspond to the number of orthologs found per species and are indicated on the left side of the plot. The intersections among different species are
shown by connective dots, which is ranked by the number of shared species (conservation degree). The number of orthologs within each intersection is indicated as bar
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Outstanding Questions
Modifiers are enriched for genes that
are functionally related to the primary
variant; however, most functional con-
nections among genes remain
obscure. How do we integrate sys-
tems genetic information to better
understand gene function?

How much do functional wiring dia-
grams of genetic interactions differ
among individuals?

Is there a core set of genetic interac-
tions common to all individuals?

How can other factors, such as envi-
ronment, perturb genetic interaction
network structure and shape pheno-
typic outcomes?
This cross-species analysis of ortholog essentiality allowed us to further test the hypothesis that
genetic network complexity may constraint the modifiability of the associated phenotype for a
given gene. For example, if all members in an ortholog group are consistently essential or non-
essential, this ortholog group may be less phenotypically modifiable than an ortholog group
with variable essentiality across different member species. In this case, we expect the ‘variable’
groups to display an intermediate level of network complexity compared with the ‘essential’ and
‘non-essential’ ones. Using the yeast genetic interaction data [31], we examined the interaction
degrees (combined number of positive and negative interactions) for the ‘essential’, ‘non-
essential’, and ‘variable’ ortholog groups for different conservation levels (Figure 2C). Indeed,
we consistently observed an intermediate level of interaction degree for the ‘variable’ ortholog
groups compared with the ‘essential’ groups, which displayed the highest interaction degrees,
and the ‘non-essential’ groups, which displayed the lowest interaction degrees, across all levels
of conservation (Figure 2C). Furthermore, we also observed a linear relationship between the
mean interaction degree and the level of conservation: the higher the level of conservation, the
higher the mean number of interaction and vice versa (Figure 2D). These observations fit well
with our general model, and illustrate how data from one species, in this case the genetic
interaction degrees from S. cerevisiae, can be extrapolated to predict patterns of gene
evolution across a broad evolutionary scale.

Concluding Remarks
At the current stage, precisely predicting traits from genomes is still a goal to be reached. On
the one hand, advances in sequencing technologies allow us to easily probe thousands of
genomes across various populations and species; on the other hand, ever-growing data sets
from systems biology studies provide deeper understanding of cellular functions. Bridging the
gap between such vast functional genomic data and precise phenotypic prediction at the
individual level requires a paradigm shift in our view of quantitative genetics: the genotype-to-
phenotype relationship is far from linear but results from interconnected and dynamic networks.
This ‘omnigenic’ view of complex traits [48], such as most human diseases, therefore invokes a
better understanding of how genes are connected within and across different genetic back-
grounds, and appears to be critical for unraveling the underlying genetic architecture of traits.

Large-scale forward genetics in model systems has demonstrated the importance and preva-
lence of genetic interactions in basic cellular functions. In the context of gene essentiality as a
measure of phenotypic variability, we showed that the phenotypic modifiability, with regard to
both gene essentiality across different backgrounds in yeast and ortholog essentiality and
conservation across different species, can be recapitulated by the connectivity of genes on the
global yeast genetic interaction network. However, it is impractical to consider mapping the
functional wiring of all genes for large numbers of individuals using current methods, even in a
genetically tractable system like yeast. Moving forward, the focus should be drawn on
amenable strategies to better understand network architecture and dynamics at the population
level. On the experimental side, increasingly efficient editing techniques, such as those involving
plot at the top panel. (B) Pie chart distribution of gene essentiality within each degree of ortholog conservation groups. Gene essentiality for each ortholog from each of
the species examined was obtained from the Online GEne Essentiality (OGEE) database [47]. Genes that are consistently non-essential across different species are
annotated as ‘Non-essential’ for the entire ortholog group and color coded as light blue. Genes that are consistently essential are annotated as ‘Essential’ (dark blue)
and genes that display variable essentialities across different species are annotated as ‘Variable’ (blue). (C) Combined genetic interaction degree observed in S.
cerevisiae [31] relative to the degree of conservation and gene essentiality annotations. Interaction degree data were available for 1994/3408 yeast orthologs. For each
degree of conservation, one-tailed t-test has been performed for all pairwise comparison between ‘Non-essential’, ‘Variable’, and ‘Essential’ qualifiers. The significance
levels are indicated on the graph. Significance levels: n.s (P > 0.1), � (0.05 < P < 0.1), * (0.005 < P < 0.05), ** (0.0005 < P < 0.005), *** (P < 0.0005). (D) Median
interaction degree observed in each group of conservation degree. Error bars indicate the standard error. All data are presented in Table S2. SEM, standard error of the
mean.
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CRISPR-Cas9, opens the door to analysis of genetic interactions in more complex systems
such human cells. Other genome-wide information such as coexpression patterns and protein–
protein interactions should also be more readily integrated.

More importantly, we should take advantage of the richness of population genomics data and
explore genome-wide signatures of coevolving functional modules. Natural genetic variants
comprise not only loss- or gain-of-function mutations that directly impact protein function, but
also other types of mutations that may change expression patterns, localizations, protein
conformations, etc. Understanding the interaction networks beyond the context of loss-of-
function variants and gene essentiality, for example, diseases in human populations, will offer
new insights into how network complexity shapes phenotypic outcome within a population (see
Outstanding Questions).
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