
RESEARCH ARTICLE SUMMARY
◥

YEAST GENOMICS

Systematic analysis of complex
genetic interactions
Elena Kuzmin,* Benjamin VanderSluis,* Wen Wang, Guihong Tan, Raamesh Deshpande,
Yiqun Chen, Matej Usaj, Attila Balint, Mojca Mattiazzi Usaj, Jolanda van Leeuwen,
Elizabeth N. Koch, Carles Pons, Andrius J. Dagilis, Michael Pryszlak, Jason Zi Yang Wang,
Julia Hanchard, Margot Riggi, Kaicong Xu, Hamed Heydari, Bryan-Joseph San Luis,
Ermira Shuteriqi, Hongwei Zhu, Nydia Van Dyk, Sara Sharifpoor, Michael Costanzo,
Robbie Loewith, Amy Caudy, Daniel Bolnick, Grant W. Brown, Brenda J. Andrews,†
Charles Boone,† Chad L. Myers†

INTRODUCTION: Genetic interactions occur
when mutations in different genes combine
to result in a phenotype that is different from
expectation based on those of the individual
mutations. Negative genetic interactions oc-
cur when a combination of mutations leads to
a fitness defect that is more exacerbated than
expected. For example, synthetic lethality oc-
curs when two mutations, neither of
which is lethal on its own, generate
an inviable double mutant. Alterna-
tively, positive genetic interactions
occur when genetic perturbations
combine to generate a double mutant
with a greater fitness than expected.
Global digenic interaction studies have been
useful for understanding the functional wiring
diagramof the cell andmay also provide insight
into the genotype-to-phenotype relationship,
which is important for tracking the missing
heritability of human health and disease. Here
we describe a network of higher-order trigenic
interactions and explore its implications.

RATIONALE:Variation in phenotypic outcomes
in different individuals is caused by genetic de-
terminants that act as modifiers. Modifier loci
are prevalent in human populations, but knowl-
edge regarding how variants interact to modu-
late phenotype in different individuals is lacking.
Similarly, in yeast, traits including conditional
essentiality—in which certain genes are essen-
tial in one genetic background but nonessential
in another—often result from an interplay of
multiple modifier loci. Because complex mod-
ifiers may underlie the genetic basis of phys-
iological states found in natural populations,
it is critical to understand the landscape of
higher-order genetic interactions.

RESULTS: To survey trigenic interactions, we
designed query strains that sampled key fea-
tures of the global digenic interaction network:
(i) digenic interaction strength, (ii) average
number of digenic interactions, and (iii) di-
genic interaction profile similarity. In total,
we tested ~400,000 double and ~200,000 tri-
ple mutants for fitness defects and identified

~9500 digenic and ~3200 trigenic
negative interactions. Although tri-
genic interactions tend to be weaker
than digenic interactions, they were
both enriched for functional relation-
ships. About one-third of trigenic
interactions identified “novel” con-

nections that were not observed in our di-
genic control network, whereas the remaining
approximately two-thirds of trigenic interac-
tions “modified” a digenic interaction, sug-
gesting that the global digenic interaction
network is important for understanding the
trigenic interaction network. Despite their
functional enrichment, trigenic interactions
also bridged distant bioprocesses. We estimate
that the global trigenic interaction network
is ~100 times as large as the global digenic
network, highlighting the potential for com-
plex genetic interactions to affect the biol-
ogy of inheritance.

CONCLUSION: The extensive network of tri-
genic interactions and their ability to gen-
erate functionally diverse phenotypes suggest
that higher-order genetic interactions may
play a key role in the genotype-to-phenotype
relationship, genome size, and speciation.▪
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Mapping digenic and corresponding 
trigenic interaction networks
Digenic and trigenic interactions were scored in 
parallel for the corresponding single mutant and 
double mutant query strains (large nodes). 

Systematic analysis of trigenic interac-
tions.We surveyed for trigenic interactions
and found that they are ~100 times as
prevalent as digenic interactions, often
modify a digenic interaction, and connect
functionally related genes as well as genes
in more diverse bioprocesses (multicolored
nodes). PPI, protein-protein interaction.
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To systematically explore complex genetic interactions, we constructed ~200,000 yeast
triple mutants and scored negative trigenic interactions. We selected double-mutant
query genes across a broad spectrum of biological processes, spanning a range of
quantitative features of the global digenic interaction network and tested for a genetic
interaction with a third mutation. Trigenic interactions often occurred among functionally
related genes, and essential genes were hubs on the trigenic network. Despite their
functional enrichment, trigenic interactions tended to link genes in distant bioprocesses
and displayed a weaker magnitude than digenic interactions. We estimate that the
global trigenic interaction network is ~100 times as large as the global digenic network,
highlighting the potential for complex genetic interactions to affect the biology of
inheritance, including the genotype-to-phenotype relationship.

G
enetic interactions occur when a combi-
nation of mutations in different genes
leads to an unexpected phenotype that
deviates from a model incorporating the
combined effects of the corresponding

single-mutant phenotypes. In humans, each in-
dividual carries thousands of different variants
that may modulate gene function, which means
that there is incredible potential for combinato-
rial genetic interactions to determine our person-
al phenotype (1, 2). Indeed, genetic interactions
are thought to represent a substantial compo-
nent of the missing heritability associated with
current genome-wide association studies (GWAS)
(3). However, the statistical limitations associated
with GWAS data sets preclude the detection of
specific genetic interactions, and thus potential
genetic networks underlying inherited traits,
including diseases, remain elusive (3–5). To ad-
dress the role of genetic interactions in the
genotype-to-phenotype relationship, we have
been exploring their general principles through
systematic analysis of genetic networks under-
lying cellular fitness in a genetically tractable
model system, the budding yeast Saccharomyces

cerevisiae (6). Our previous studies focused pre-
dominantly on genetic interactions involving two
genes (digenic interactions) (7). In this study, we
analyzed a series of single-, double-, and triple-
mutants by quantifying their colony size, as a
proxy for fitness, to systematically explore com-
plex genetic interactions.
There are two basic types of fitness-based ge-

netic interactions. A negative genetic interac-
tion refers to a combination of mutations that
results in a fitness defect that is more severe than
expected (8). Synthetic lethality is an extreme
example of a negative genetic interaction and
occurs when two mutations, neither of which is
lethal on its own, combine and lead to an inviable
double-mutant phenotype (9, 10). Conversely,
a positive genetic interaction occurs when a
combination of genetic perturbations gener-
ates a double mutant with a greater fitness than
expected; one example is genetic suppression, in
which the fitness defect of a query mutant is
alleviated by a mutation in a second gene (11).
To map a global digenic interaction network
for yeast, we constructed millions of double mu-
tants and identified hundreds of thousands of

negative and positive genetic interactions (7). To
put these results in perspective, although only
~1000 of the ~6000 total yeast genes are indi-
vidually essential and cause lethality when deleted
(12) and an equivalent number of nonessential
genes cause a slow-growth defect under standard
laboratory conditions (13), ~550,000 different yeast
gene pairs display a combinatorial negative ge-
netic interaction, including a subset of ~10,000
extreme synthetic lethal interactions involving
nonessential gene pairs (7). Thus, there are nu-
merous potential ways to generate extreme lethal
phenotypes through negative digenic interactions
of nonessential gene pairs.
The set of digenic interactions for a query gene,

its genetic interaction profile, provides a quan-
titative measure of function, because genes with
similar roles have overlapping profiles (14, 15).
Genes belonging to the same biological path-
way or protein complex display highly similar
genetic interaction profiles. Moreover, a global
network based on digenic interaction profile sim-
ilarity reveals a hierarchy of functional modules,
which includes detailed pathways and complexes,
that in turn cluster into larger modules corre-
sponding to bioprocesses. Those larger units sub-
sequently assemble into modules corresponding
to cellular compartments to outline the functional
architecture of a cell (7).
A complete understanding of the role of ge-

netic interactions in the genotype-to-phenotype
relationship requires that we also investigate com-
plex, higher-order genetic interactions involving
more than two genes. Because there are ~2000
times as many triple gene combinations as gene
pairs (~18 million), it is possible that there is a
substantially greater number of trigenic than
digenic interactions and that higher-order inter-
actions may be important for driving inherited
traits. In this study, we surveyed yeast trigenic
interactions, sampling quantitative features of
the digenic network, and explored the impli-
cations of the higher-order genetic interaction
network.

Mapping trigenic interactions
quantitatively and surveying the
global trigenic landscape

To explore the trigenic interaction landscape, we
designed query strains that sampled three key
quantitative features of our global digenic in-
teraction network (7). We designed query strains
carrying mutations in two genes spanning a
range of the following features: (1) digenic in-
teraction strength, (2) number of digenic inter-
actions (average digenic interaction degree), and
(3) digenic interaction profile similarity (Fig. 1A
and table S1). Gene pairs were selected to fill
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bins of varying digenic interaction attributes and
to cover all major biological processes in the cell,
thus producing a sample that would provide a di-
verse survey of the trigenic interaction landscape.
We largely focused on unambiguous singletons
because duplicated genes represent a relatively
small subset of genes and thus can only represent
a small fraction of the global trigenic interac-
tion network. For this survey, we constructed
151 double-mutant query strains and 302 single-
mutant strains, encompassing 47 temperature-
sensitive alleles of different essential genes and
255 deletion alleles of nonessential genes. The
query strains in this set were selected to span
the different digenic attribute bins according to
predefined thresholds (table S1). An additional
31 double-mutant queries fell outside of the de-
fined thresholds but were included for validation
and comparison purposes (data S1 to S3) (16).
The fitness of the resulting query strains was mea-
sured using a quantitative growth assay, and the
behavior of the single- and double-mutant query
strains showed strong agreement with our pre-
viously published data set (figs. S1 and S2 and
data S4) (7, 15).

Trigenic interaction screening required devel-
opment and implementation of three opera-
tional components. First, synthetic genetic array
(SGA) analysis—an automated form of yeast ge-
netics that is often used to cross a query gene
mutation into an array of single mutants to
generate a defined set of haploid double mutants
(6)—was adapted such that a double-mutant
query strain could be crossed into an array of
single mutants to generate triple mutants for
trigenic interaction analysis (Fig. 1B). Because
the identification of a trigenic interaction re-
quires comparison with the corresponding dou-
ble mutants, we also conducted screens in which
the individual mutants of the query gene pair
were scored for digenic interactions (Fig. 1B).
Second, for experimental feasibility, we assem-
bled a diagnostic array of 1182 strains, compris-
ing 990 nonessential gene deletion mutants and
192 essential gene mutants carrying temperature-
sensitive alleles, which combine to span ~20%
of the yeast genome (data S5). The diagnostic
array was designed to be highly representative
of the rest of the genome in terms of exhibited
genetic interaction profiles (fig. S3). Briefly, ar-

ray strains were selected from a larger genetic
interaction data set for their ability to represent
different regions of the global network in a min-
imally redundant way. This was accomplished
by iteratively selecting strains to maximize the
performance of profile similarities when predict-
ing coannotations to a functional gold standard
(17). Third, we developed a scoring method, the
t-SGA score, which combines double- and triple-
mutant fitness estimates derived from colony
size measurements to identify trigenic interactions
quantitatively (Fig. 1C). The t-SGA score differs
from the MinDC score reported previously (18),
because it accounts for all cases in which two of
the genes are not independent, resulting in an ex-
pectation that contains digenic interaction effects
scaled by the fitness of the noninteracting genes
(fig. S4) (16). The final trigenic t-SGA interaction
score then accounts for digenic effects but also
enables detection of trigenic interactions in which
digenic effects of insufficient explanatory power
can be found.
We focused exclusively on the analysis of del-

eterious negative trigenic interactions for two
reasons. First, quantitative scoring of negative
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Fig. 1. Triple-mutant synthetic genetic array (SGA) analysis. (A) Criteria for selecting query strains for
sampling trigenic interaction landscape of singleton genes in yeast. The gene pairs were grouped into three
general categories based on a range of features: (1) Digenic interaction strength. Gene pairs were directly
connected by zero to very weak (digenic interaction score: 0 to –0.08, n = 74 strains), weak (–0.08 to –0.1,
n = 32), or moderate (<–0.1, n = 45) negative digenic interactions. (2) Number of digenic interactions. Gene
pairs had a low (10 to 45 interactions, n = 50), intermediate (46 to 70, n = 53), or high (>71, n = 48) average
digenic interaction degree (denoted by the number of black edges of each node). (3) Digenic interaction profile
similarity. Gene pairs had low (score: –0.02 to 0.03, n = 46; represented by genes A and B, which show a
relatively low overlap of genetic interactions with genes K to R), intermediate (0.03 to 0.1, n = 59; represented
by genes C and D, which display an intermediate overlap of genetic interactions), or high (>0.1, n = 46, rep-
resented by genes E and F, which display a relatively high level of overlap of genetic interactions) functional
similarity, as measured by digenic interaction profile similarity and coannotation to the same GO term(s). Query
mutant genes were either nonessential deletion mutant alleles (D) or conditional temperature-sensitive (ts)
alleles of essential genes. (B) Diagram illustrating the triple-mutant SGA experimental strategy. To quantify a
trigenic interaction, three types of screens are conducted in parallel. To estimate triple-mutant fitness, a double-
mutant query strain carrying two desired mutated genes of interest (red and blue filled circles) is crossed
into a diagnostic array of single mutants (black filled circle). Meiosis is induced in heterozygous triple
mutants, and haploid triple-mutant progeny is selected in sequential replica pinning steps. In parallel, single-
mutant control query strains are used to generate double mutants for fitness analysis. (C) Triple-mutant

SGA quantitative scoring strategy. The top equation shows the quantification of a digenic interaction, where eij is the digenic interaction score, ƒij is the
observed double-mutant fitness, and the expected double-mutant fitness is expressed as the product of single-mutant fitness estimates ƒiƒj. In the
bottom equation, the trigenic interaction score (tijk) is derived from the digenic interaction score, where ƒijk is the observed triple-mutant fitness and ƒiƒjƒk
is the triple-mutant fitness expectation expressed as the product of three single-mutant fitness estimates. The influence of digenic interactions is
subtracted from the expectation, and each digenic interaction is scaled by the fitness of the third mutation.

RESEARCH | RESEARCH ARTICLE
on A

pril 20, 2018
 

http://science.sciencem
ag.org/

D
ow

nloaded from
 

http://science.sciencemag.org/


genetic interactions is often more accurate than
that for positive interactions because there is a
greater signal-to-noise ratio for negative genetic
interactions. Hence, negative genetic interac-
tions are associated with lower false-positive
and false-negative rates than positive interactions
(8), a feature that is important for the robust
statistical analysis necessary to differentiate true
trigenic interactions from the extensive back-
ground digenic network. Second, negative digenic
interactions are generally more functionally in-
formative than positive digenic interactions (8),
and thus the large-scale mapping of a negative
trigenic interaction network is expected to pro-
vide the most mechanistic insight into gene
function and pathway wiring.

Trigenic interactions are enriched
for functionally related genes

To obtain sufficient precision, we carried out
each analysis, which involved screening the in-
dividual query genes for digenic interactions
and the double-mutant query for trigenic inter-
actions, in at least two replicate screens with four
colonies per screen (fig. S5). In total, we tested
410,399 double and 195,666 triple mutants for
fitness defects, meeting a previously established
intermediate magnitude cutoff (15) (data S2) and
identified 9363 digenic and 3196 trigenic negative
interactions. From detailed validation of trigenic
interactions of our CLN1-CLN2 double-mutant
query, which was screened previously (19), we
estimated a false-negative rate of ~40%, a false-
positive rate of ~20%, and a true-positive rate
between ~60 and ~75% (table S2 and fig. S6) (16),
which is consistent with our previous global di-
genic network analysis (8).
The distribution of trigenic interaction degree

for array strains shows that the majority of low-
degree genes (70%) account for ~88% of all tri-
genic interactions, whereas highly connected
genes contribute the remaining ~12% of interac-
tions. Thus, the trigenic interactions are not as-
sociated with a small set of highly connected
genes; rather, the interactions are distributed
across many different genes (fig. S7). On the other
hand, with a smaller, more biased set of double-
mutant query genes, the distribution of trigenic
interaction degree shows that ~22% of them ac-
counted for 51% of trigenic interactions, indicat-
ing that a particular subset of the digenic queries
were enriched for trigenic interactions (fig. S7).
About one-third of the newly mapped trigenic
interactions identified connections that were
not observed in our digenic control network; we
refer to these as “novel” trigenic interactions. The
remaining approximately two-thirds of the trigenic
interactions overlapped a digenic interaction while
still exhibiting a stronger than expected fitness
defect in the triple mutant; these we refer to as
“modified” trigenic interactions (fig. S8A). Thus,
although a substantial fraction of trigenic inter-
actions elucidate totally new functional information,
the majority of the trigenic interactions we mapped
expand upon the digenic interaction network.
We first assessed the functional information

embedded in the trigenic network by comparing

the distributions of digenic and trigenic inter-
actions across different biological processes.
As observed previously (15), digenic interactions
were enriched among genes annotated to the
same biological process and, although the mag-
nitude of trigenic interaction enrichment was
somewhat lower, they were comparably enriched
for genes within the same bioprocess (Fig. 2A).
We also evaluated the enrichment of digenic and
trigenic interactions across common functional
standards, including annotation to the same Gene
Ontology (GO) biological process, subcellular-
localization pattern, protein-protein interaction,
and gene coexpression (Fig. 2B). Like digenic
interactions (7, 15), genes involved in trigenic
interactions were significantly enriched for all
of these standards, with genes participating in
the “modified” class of trigenic interactions ex-
hibiting stronger functional relationships (fig.
S8B) as well as a stronger magnitude of inter-
actions (fig. S8C). Thus, trigenic interactions
resemble digenic interactions in that they are
rich in functional information, which means that
genes participating in many trigenic interactions
can be predicted from alternative data sets and
general knowledge of cellular function.

Trigenic interactions expand functional
connections mapped by the global
digenic network

Our functional analysis revealed that trigenic
interactions have some properties distinct from

those of digenic interactions, which suggests that
trigenic interactions may be useful for discover-
ing previously unknown connections between
genes and their corresponding pathways. As an
illustrative example, we examined the MDY2-
MTC1 double-mutant query, which is a highly
connected hub within the trigenic network.MDY2
encodes a protein that interacts and functions
with components of the GET (guided entry of
tail-anchor) pathway (20), which is important
for Golgi–to–endoplasmic reticulum (ER) traf-
ficking and inserting tail-anchored proteins into
ER membranes. MTC1 encodes a protein of un-
known function that localizes to the early Golgi
apparatus. The MTC1 digenic interaction profile
is similar to that of USO1, which is involved in
vesicle-mediated ER-to-Golgi transport (21), and
RUD3, which encodes a Golgi matrix protein
important for the structural organization of the
cis-Golgi (22), suggesting that MTC1 also has a
role in the early secretory pathway.
As expected from these previous findings, the

MDY2 and MTC1 digenic interactions identified
in our screen were enriched for genes involved
in cell polarity and the early secretory pathway
(Fig. 3, fig. S9A, and data S6). However, theMDY2-
MTC1 double-mutant query profile encompassed
a much more functionally diverse set of genes
(Fig. 3). For example, although we observed novel
trigenic interactions with ER-to-Golgi transport
genes, we also observed trigenic interactions
with genes involved in other modes of vesicle

Kuzmin et al., Science 360, eaao1729 (2018) 20 April 2018 3 of 9

Fold change over background
(all p < 0.008)

Co-localization

Co-annotation

Co-expression

PPI

0 2 4 6 8

Dige
nic

 in
te

ra
cti

on
s

Tr
ige

nic
 in

te
ra

cti
on

s

mRNA and tRNA processing

Nuclear-cytoplasmic transport

Vesicle traffic
Mitosis and chromosome segregation

DNA replication and repair

Transcription and chromatin organization

Glycosylation and protein folding/targeting

Mitochondria and respiration

Within
process

|log2 fold change|

enrichment, p < 0.05
p > 0.05

**

** *

*

**
**
**
**

**

*

0.5 2 3.5

BA

Trigenic interactions
Digenic interactions

Fig. 2. Functional characterization of trigenic interactions. (A) Frequency of negative genetic
interactions within biological processes. For our analysis, we used the fraction of screened query-
array combinations exhibiting negative interactions belonging to functional gene sets annotated by
SAFE (spatial analysis of functional enrichment) on the global genetic interaction network (55).
The “within process” category received a count for any combination in which both genes for digenic
interactions or all three genes for trigenic interactions were annotated to the same term. The size
of the circle assigned to each “within process” element reflects the fold increase over the
background fraction of interactions (digenic = 0.023, trigenic = 0.016). Significance was assessed
with a hypergeometric test; P < 0.05. Blue circles represent significant enrichment; gray circles
denote no significant change. (B) Enrichment of negative digenic and trigenic interactions across
four functional standards. The dashed line indicates no enrichment. The functional standards are
merged protein-protein interaction (PPI) (56–60), coannotation (based on SAFE terms) (7),
coexpression (61), and colocalization (62). Significance was assessed with a hypergeometric test;
* represents 10−4 ≤ P < 0.01, ** represents P < 10−4.
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trafficking, including endocytosis and peroxi-
some biology. Moreover, MDY2-MTC1 trigenic
interactions identified connections to genes with
more diverse functions, such as components of
the elongator complex (Fig. 3), which controls
the modification of wobble nucleosides in tRNAs,
and several genes involved in DNA replication
and repair. Notably, the MDY2-MTC1 query also
showed a trigenic interaction with TOR1 (target
of rapamycin 1), which encodes the key kinase
subunit of the TORC1 complex that is required
for growth in response to nutrients by regulat-
ing ribosome biogenesis, nutrient transport, and
autophagy (23). Consistent with this observation,
the MDY2-MTC1 trigenic interaction network
captures a set of genes that have a dual role in
TORC1 signaling and sorting of the general ami-
no acid permease, including GTR1, MEH1, and
LST4 (24–26).
The spectrum of bioprocesses that are repre-

sented in genetic interaction profiles can be vis-
ualized by mapping functional enrichment within
the context of the global yeast digenic interac-
tion profile similarity network, which clusters
genes into 17 distinct bioprocesses (7, 27) (Fig. 4A).
In comparison with the MDY2 and MTC1 digenic
interaction profiles (Fig. 4, B and C), the MDY2-
MTC1 trigenic interactions were enriched not
only for vesicle trafficking and cell polarity bio-
process regions of the network but also in regions
encompassing genes annotated to the tRNA wob-
ble modification bioprocess, DNA replication and
repair, as well as mitosis and chromosome segre-
gation (Fig. 4D). Thus, the MDY2-MTC1 trigenic
interaction profile exhibited a more expanded
and functionally diverse set of connections than
either of the corresponding MDY2 or MTC1 di-
genic interaction profiles.
We used a variety of assays to test three func-

tional connections revealed by the MDY2-MTC1
trigenic interaction profile. First, although the

MDY2-MTC1 double-mutant strain did not show
an exaggerated cell biological phenotype asso-
ciated with the early trafficking function (fig.
S9B), it displayed a marked synthetic sick pheno-
type when combined with deletion of SLA1, which
is involved in cortical actin assembly and endo-
cytic vesicle formation, which translates into an
extended Sla1 patch lifetime, reflecting a defect
in endocytosis (Fig. 5A) (28). Second, given a
negative trigenic interaction with OAF1, which
encodes an oleate-activated transcription factor
involved in peroxisome organization and bio-
genesis (29), we used fluorescence microscopy
to explore peroxisome morphology. The MDY2-
MTC1 double mutant displayed an accumulation
of relatively small peroxisomes (Fig. 5B), which
may be indicative of a defect in ER-derived per-
oxisome membrane biogenesis (30). Third, the
MDY2-MTC1 double mutant showed pronounced
sensitivity to hydroxyurea (HU) but not methyl
methanesulfonate (MMS), which is consistent
with a specific defect in DNA replication and re-
flects the negative genetic interactions we ob-
served with a number of DNA replication and
repair genes, including NSE4 and NSE5, which
encode components of the Smc5-Smc6 complex
that mediates resolution of DNA structures span-
ning sister chromatids (Fig. 5C and fig. S10, A to
C) (31). We suspect that the MDY2-MTC1 double
mutant may be primarily defective in traffick-
ing functions that can modulate signaling or
metabolic pathways and thereby influence DNA
synthesis and repair pathways indirectly (fig.
S10, D to H).

Trigenic interaction profiles are more
functionally diverse than their
corresponding digenic profiles

To test the generality of whether query genes
connect to more functionally divergent genes
through trigenic interactions than through di-

genic interactions, we compared digenic pro-
file similarity of pairs of genes spanned by either
digenic or trigenic interactions. Indeed, genes
involved in trigenic interactions tend to show
profiles that are less similar than those con-
nected by digenic interactions, which suggests
that they are less functionally related than those
connected by digenic interactions (Fig. 6A and
fig. S11A). We also found that trigenic interactions
were more enriched than digenic interactions
for connections that bridge several different
biological processes, including mRNA and tRNA
processing, vesicle trafficking, mitosis and chro-
mosome segregation, and glycosylation and pro-
tein folding and targeting (Fig. 6B). Moreover,
as we showed for theMDY2-MTC1 double-mutant
query (Fig. 4), trigenic interaction profiles were
generally enriched for genes spanning more di-
verse bioprocesses than the corresponding di-
genic interaction profiles (Fig. 6C and fig. S11,
B to D). Genes involved in vesicle trafficking
were particularly enriched for trigenic interac-
tions occurring between bioprocesses (Fig. 6B
and figs. S7 and S11D). As we observed for MDY2-
MTC1, other double-mutant queries carrying
mutations in genes implicated in membrane traf-
ficking were enriched for trigenic interactions
with genes involved in DNA replication and re-
pair machinery, which may indicate a general
connection between these two bioprocesses. For
example, the digenic query strain MVP1-MRL1,
which carries mutations in genes required for
sorting proteins to the vacuole (32, 33), and the
strain SEC27-GET4, which carries mutations in
genes involved in ER-to-Golgi transport (34) and
the insertion of tail-anchored proteins into ER
membrane (20), both exhibited an enrichment
of trigenic interactions with DNA replication
and repair machinery (fig. S11D). In general, our
findings show that trigenic interaction profiles
are composed of connections involving genes
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that are more functionally diverse than their cor-
responding digenic interaction profiles (Fig. 6C).
However, despite their higher tendency to con-
nect diverse processes, a significant fraction of
trigenic interactions occurs among genes within
the same bioprocess (P < 1 × 10−16; hypergeo-
metric test) (Fig. 2A).

Gene features of trigenic interactions
and the expanse of the global
trigenic landscape

Having selected the query gene pairs based on
the properties of the global digenic interaction
network, we can assess how these properties relate
to trigenic interaction frequency. The strongest
correlation with the number of observed trigenic
interactions for each gene pair was the digenic
genetic interaction profile similarity (correlation
coefficient r = 0.41, P = 1.2 × 10−7), followed by
the average number of digenic interactions of
the query genes (r = 0.25, P = 1.9 × 10−3) and the

strength of a direct negative genetic interaction
between the query gene pair (r = 0.23, P = 5.4 ×
10−3) (fig. S12, A to C). Thus, numerous trigenic
interactions were observed for functionally re-
lated query genes, which display overlapping
profiles on the digenic similarity network and
often show a digenic interaction with each other
(7) (Fig. 7A). As observed for digenic interactions
(7), the frequency of trigenic interactions was
highly correlated with the fitness defect of the
double-mutant query strain (fig. S13). Consistent
with this observation, essential genes exhibited
high connectivity on the trigenic interaction
network. A double-mutant query that carries at
least one temperature-sensitive allele of an es-
sential gene, which is often associated with a
fitness defect at the semipermissive screening
temperature, exhibited more genetic interactions
than a query deleted for a pair of nonessential
genes (P = 0.035) (Fig. 7B). More generally, query
genes that are highly connected on the digenic

network are also highly connected on the tri-
genic network (fig. S12D).
Notably, trigenic interactions tend to be ~25%

weaker than digenic interactions (P < 1.7 × 10−98)
(Fig. 7C), which means the average digenic in-
teraction often has a more profound phenotype
than the average trigenic interaction. However,
to fully understand the potential for trigenic in-
teractions to drive fitness defects, we also need
to estimate the frequency at which they occur.
Because we have mapped digenic interactions
comprehensively and we know the false-positive
and false-negative rates associated with this
analysis, we can estimate the number of digenic
interactions within the yeast genome, reveal-
ing a distribution that centers on ~6 × 105 total
negative interactions (Fig. 7D) (16). Further-
more, because digenic interaction properties
are predictive of trigenic interaction degree, we
can also extrapolate our findings to estimate the
number of negative trigenic interactions across
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Fig. 4. Enrichment of genetic interactions within bioprocesses
defined by a global network of digenic interaction profile
similarities. (A) The global digenic interaction profile similarity network
(7) was annotated using SAFE (55), identifying network regions
enriched for similar GO biological process terms as outlined by dashed

lines. rRNA, ribosomal RNA; ncRNA, noncoding RNA; MVB, multi-
vesicular body. (B) MDY2 digenic interactions showing bioprocess
enrichments. (C) MTC1 digenic interactions showing bioprocess
enrichments. (D) MDY2-MTC1 trigenic interactions showing
bioprocess enrichments.
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the whole genome. As noted earlier, we selected
gene pairs for trigenic analysis to fill bins of vary-
ing attributes, including double-mutant queries
with either weak or strong interactions, as well
as those with either sparse or rich genetic in-
teraction profiles, as depicted schematically in
Figs. 1A and 7A (table S1). For extrapolation to
the whole genome, we used the mean trigenic
interaction degree of double mutants in a given
bin as the expected degree for any hypothetical
pair from the genome with similar character-
istics (data S7 and fig. S14). Integrating this
value across the total number of gene pairs with
the given characteristics, which preserves the
double-mutant distribution across different di-
genic interaction features, and summing over
all bins yielded an estimate of the total number
of trigenic interactions.
In the yeast genome, there are 2000 times as

many possible triple gene combinations (36 bil-
lion) as possible gene pairs (18 million), but the
density of interactions (as both observed and
extrapolated) is similar, reduced by only a factor
of ~3 for trigenic interactions (table S3). We
predict that ~108 trigenic combinations exhibit
a negative genetic interaction, generating a con-
servative estimate of on the order of 100 times
as many trigenic interactions as observed for
the global digenic network (Fig. 7D and table
S3). To establish confidence intervals (CIs) for
the estimate, we repeated the extrapolation pro-
cess with 10,000 bootstrapped samplings of the
151 double-mutant query pairs, keeping their
associated trigenic interactions degrees and the
corresponding digenic interaction features con-
stant. The bin with the lowest digenic interac-
tion degree encompasses a large fraction of the
potential double mutants in the genome and is
assigned a low trigenic interaction degree, which
means that the summarized estimate provided
is likely a conservative underestimate. More-
over, because our binning scheme restricts our
extrapolation to ~25% of the potential trigenic
interaction space (e.g., by omitting potential
double-mutant queries that show a positive di-
genic interaction), we are underestimating its
extent, and the true number of trigenic inter-
actions is likely to be several times higher (fig.
S15 and table S3) (16). The vast expanse of the
global trigenic interaction network points to
the potential for higher-order interactions to
affect all aspects of the genetics of outbred pop-
ulations, including the genotype-to-phenotype
relationship.

Discussion

Systematic mapping of trigenic interactions re-
vealed that their properties resemble those of
digenic interactions because they often connect
functionally related genes, which means that tri-
genic interactions have the potential to con-
tribute to our understanding of the functional
wiring diagram of the cell. The global digenic
network is predictive of trigenic interactions
because query gene pairs showing properties
associated with shared functionality, such as
overlapping digenic interaction profiles or a

negative digenic genetic interaction, often map
numerous trigenic interactions (Fig. 7A). Thus,
if two query genes are in the same or similar bio-
process cluster on the global digenic profile sim-
ilarity network (Fig. 4A), they will likely show
a rich trigenic interaction profile, as we observed
for the MDY2-MTC1 double mutant query (Figs. 3
and 4D). Gene essentiality and the average di-
genic interaction degree of the query gene pair
were also correlated with trigenic connectivity
(Fig. 7B), indicating that highly connected hubs
are consistent on both the digenic and trigenic
interaction networks (fig. S12, C and D).
Many of the trigenic interactions we observed

overlapped with at least one digenic interaction.
In some cases, we chose query gene pairs display-
ing a negative genetic interaction and so all of
the trigenic interactions in these profiles accen-
tuated the query interaction (fig. S8). Moreover,

a substantial proportion of trigenic interac-
tions measured for noninteracting query pairs
exacerbated a digenic interaction that was pre-
viously seen between one or both of the query
genes and the third gene (fig. S8). Thus, our find-
ings show that negative trigenic interactions often
highlight the potential for a third mutation to
amplify the phenotype of a digenic interaction.
Analogously, in human genetics, the variation in
an individual’s genetic background can have pro-
found influence on the penetrance of the pheno-
type associated with a disease gene (35).
Although we found that trigenic interactions

tend to be slightly weaker than digenic interac-
tions, they are ~100 times more numerous and
are more functionally diverse than their digenic
counterparts. The expanse of possible three-gene
combinations makes exhaustive trigenic inter-
action mapping intractable with our current
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methodology. However, the substantial overlap
of the digenic and trigenic networks indicates
that the genetic landscape of the cell expands
with higher-order genetic interactions but does
not change drastically in terms of its functional
modularity. Thus, the global digenic network is
highly informative of potential trigenic inter-
actions and can be used effectively to predict
candidate query gene pairs for efficient trigenic
interaction analysis.
Trigenic interaction data may inform a wide

variety of subjects within biology. For exam-
ple, the number, magnitude, and properties of
digenic and trigenic interactions clarifies as-
pects of speciation theory in evolutionary biol-
ogy (36, 37). Hybrids between species exhibit
reduced fitness, which is usually attributed to
negative (epistatic) interactions among genes
that diverged in isolated populations. Each
population may evolve fixed variants that are

neutral or adaptive in their own genetic back-
grounds. When these variants are brought to-
gether for the first time in hybrid genomes, they
may cause deleterious genetic interactions, also
termed Dobzhansky-Muller incompatibilities. As
populations diverge from one another, the num-
ber of potential digenic interactions increases
as the square of the number of substitutions,
the so-called “snowball effect” (36, 38, 39). That
is, each subsequent substitution in a distinct
population has the potential to interact with
any substitution from the other population (and
vice versa), and thus the probability of a specia-
tion event grows with each step. Most speci-
ation genetics research has focused on these
digenic interactions. However, the number of
trigenic combinations accumulates exponentially
faster than the number of digenic combinations.
Both digenic and trigenic interactions have been
implicated in speciation (40, 41), but the general

extent to which digenic or complex negative
genetic interactions drive speciation remains
unknown. If digenic interactions do, in fact,
play a major role in orchestrating speciation,
then either the frequency and/or the strength
of deleterious trigenic interactions must be
relatively smaller than that of digenic inter-
actions. Our systematic analysis shows that
trigenic interactions are somewhat less likely
to occur (by a factor of 3; ~3% versus ~1% for
digenic versus trigenic, respectively) and gener-
ally weaker (~25% weaker) than digenic inter-
actions. Nevertheless, modeling based on our
findings suggests that trigenic interactions are
substantially common and often strong enough
to play a key role in the evolution of hybrid in-
viability (fig. S16 and table S4) (16). Because the
connections associated with higher-order inter-
actions may often overlap with those of simpler
interactions and because those simpler inter-
actions require fewer substitutions and will often
manifest first, our findings may also suggest that
the evolution of even more highly complex in-
teractions may be limited, even though their
absolute numbers increase exponentially, a
possibility that is consistent with evolutionary
theory (38).
Our trigenic interaction study is also relevant

to synthetic biology efforts aimed at efficient
synthesis (42, 43) and design of minimal ge-
nomes (44, 45). Digenic synthetic lethal interac-
tions were recently noted as a major constraint
in the design of the minimal genome for the
bacteria Mycoplasma mycoides, for which a
viable genome could be constructed only after
resolving lethal interactions that arose between
nonessential genes (44). For species in which
systematic gene perturbation studies have been
conducted, the proportion of essential genes is
relatively small (e.g., ~20% in yeast, ~10% in
human cells, which increases to 20% when only
expressed genes are considered) (13, 46–48).
However, we expect that digenic and trigenic
interactions will dictate much larger minimal
genomes than the essential gene set, even for
growth under simple laboratory conditions. With
the complete digenic network (7), we estimate
that the minimal yeast genome would encom-
pass more than ~70% of genes after accounting
for digenic interactions (table S5) (16). With the
inclusion of constraints imposed by trigenic in-
teractions, we expect that a minimal genome,
without a substantial fitness defect, may nearly
approach the complete set of genes encoded in
the genome. Thus, genetic interactions may help
to explain the large gap between the number of
genes with strong individual fitness defects and
the total genome size, and the prevalence of
yeast negative trigenic interactions suggests
that many genomes lack the potential for sub-
stantial compression while maintaining normal
fitness.
It is important to consider other types of ge-

netic interactions in addition to those associated
with severe loss-of-function alleles due to entire
open reading frame deletions of nonessential
genes or temperature-sensitive alleles of essential
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genes. Our analysis revealed that double mu-
tants with strong fitness defects often show rich
trigenic interaction profiles (fig. S13C). Similarly,
single-mutant fitness defects also correlate with
digenic interaction degree (fig. S13A) (7). Presum-
ably, the weaker fitness effects associated with
the variation found in natural populations may
require higher-order combinations, involving
more than two genes, to influence trait herita-
bility through genetic interactions (49). In the
yeast model system, genetic interactions were
found to play an important role in the herita-
bility of a number of different quantitative traits,
possibly with a greater contribution made by
digenic interactions versus higher-order inter-
actions (4, 5, 50). The genetic mechanism un-
derlying conditional essentiality, in which a given
yeast gene is nonessential in one genetic back-
ground but essential in another, often appears
to be associated with a complex set of modifier
loci (49), as do a number of other traits (51, 52).

Thus, both digenic and higher-order interactions
are established components of the genetic ar-
chitecture of yeast complex traits, and similar
findings have been made in a number of other
organisms (53). In part because model organism
populations have allele distributions that dif-
fer from those in humans, the degree to which
higher-order genetic interactions will contrib-
ute to the genetics of complex human disease
remains to be seen (50, 54). Nevertheless, the
extensive landscape of trigenic interactions re-
vealed here for yeast, as well as their capacity
for generating functionally diverse phenotypes
and driving speciation, suggests that higher-
order genetic interactions may play a key role
in the genotype-to-phenotype relationship.

Materials and methods summary

The supplementary materials contain a detailed
description of materials and methods for the
construction of yeast single-, double-, and triple-

mutant strains as well as quantification of ge-
netic interactions and any associated analyses.
General methodological information and ref-
erences to specific sections appear throughout
the text.
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total genome-wide estimate, see fig. S15B and table S3.

RESEARCH | RESEARCH ARTICLE
on A

pril 20, 2018
 

http://science.sciencem
ag.org/

D
ow

nloaded from
 

http://dx.doi.org/10.1126/science.291.5506.1001
http://www.ncbi.nlm.nih.gov/pubmed/11232561
http://dx.doi.org/10.1038/nature15393
http://www.ncbi.nlm.nih.gov/pubmed/26432245
http://dx.doi.org/10.1073/pnas.1119675109
http://www.ncbi.nlm.nih.gov/pubmed/22223662
http://dx.doi.org/10.1038/nature11867
http://www.ncbi.nlm.nih.gov/pubmed/23376951
http://dx.doi.org/10.1038/ncomms9712
http://www.ncbi.nlm.nih.gov/pubmed/26537231
http://science.sciencemag.org/


6. A. H. Tong et al., Systematic genetic analysis with ordered
arrays of yeast deletion mutants. Science 294, 2364–2368
(2001). doi: 10.1126/science.1065810; pmid: 11743205

7. M. Costanzo et al., A global genetic interaction network maps a
wiring diagram of cellular function. Science 353, aaf1420
(2016). doi: 10.1126/science.aaf1420; pmid: 27708008

8. A. Baryshnikova et al., Quantitative analysis of fitness and genetic
interactions in yeast on a genome scale. Nat. Methods 7,
1017–1024 (2010). doi: 10.1038/nmeth.1534; pmid: 21076421

9. P. Novick, D. Botstein, Phenotypic analysis of temperature-
sensitive yeast actin mutants. Cell 40, 405–416 (1985).
doi: 10.1016/0092-8674(85)90154-0; pmid: 3967297

10. A. Bender, J. R. Pringle, Use of a screen for synthetic lethal and
multicopy suppressee mutants to identify two new genes
involved in morphogenesis in Saccharomyces cerevisiae.
Mol. Cell. Biol. 11, 1295–1305 (1991). doi: 10.1128/
MCB.11.3.1295; pmid: 1996092

11. J. van Leeuwen et al., Exploring genetic suppression
interactions on a global scale. Science 354, aag0839 (2016).
doi: 10.1126/science.aag0839; pmid: 27811238

12. E. A. Winzeler et al., Functional characterization of the
S. cerevisiae genome by gene deletion and parallel analysis.
Science 285, 901–906 (1999). doi: 10.1126/
science.285.5429.901; pmid: 10436161

13. G. Giaever et al., Functional profiling of the Saccharomyces
cerevisiae genome. Nature 418, 387–391 (2002).
doi: 10.1038/nature00935; pmid: 12140549

14. A. H. Tong et al., Global mapping of the yeast genetic
interaction network. Science 303, 808–813 (2004).
doi: 10.1126/science.1091317; pmid: 14764870

15. M. Costanzo et al., The genetic landscape of a cell. Science 327,
425–431 (2010). doi: 10.1126/science.1180823; pmid: 20093466

16. Materials and methods are available as supplementary
materials.

17. R. Deshpande, J. Nelson, S. W. Simpkins, M. Costanzo,
J. S. Piotrowski, S. C. Li, C. Boone, C. L. Myers, Efficient strategies
for screening large-scale genetic interaction networks. bioRxiv
159632 [Preprint]. 5 July 2017. doi: 10.1101/159632

18. J. E. Haber et al., Systematic triple-mutant analysis uncovers
functional connectivity between pathways involved in
chromosome regulation. Cell Rep. 3, 2168–2178 (2013).
doi: 10.1016/j.celrep.2013.05.007; pmid: 23746449

19. J. Zou et al., Regulation of cell polarity through
phosphorylation of Bni4 by Pho85 G1 cyclin-dependent kinases
in Saccharomyces cerevisiae. Mol. Biol. Cell 20, 3239–3250
(2009). doi: 10.1091/mbc.E08-12-1255; pmid: 19458192

20. M. C. Jonikas et al., Comprehensive characterization of genes
required for protein folding in the endoplasmic reticulum.
Science 323, 1693–1697 (2009). doi: 10.1126/science.1167983;
pmid: 19325107

21. Y. Noda, T. Yamagishi, K. Yoda, Specific membrane recruitment
of Uso1 protein, the essential endoplasmic reticulum-to-Golgi
tethering factor in yeast vesicular transport. J. Cell. Biochem. 101,
686–694 (2007). doi: 10.1002/jcb.21225; pmid: 17192843

22. A. K. Gillingham, A. H. Tong, C. Boone, S. Munro, The GTPase
Arf1p and the ER to Golgi cargo receptor Erv14p cooperate to
recruit the golgin Rud3p to the cis-Golgi. J. Cell Biol. 167,
281–292 (2004). doi: 10.1083/jcb.200407088; pmid: 15504911

23. A. González, M. N. Hall, Nutrient sensing and TOR signaling
in yeast and mammals. EMBO J. 36, 397–408 (2017).
doi: 10.15252/embj.201696010; pmid: 28096180

24. A. van der Zand, J. Gent, I. Braakman, H. F. Tabak, Biochemically
distinct vesicles from the endoplasmic reticulum fuse to form
peroxisomes. Cell 149, 397–409 (2012). doi: 10.1016/
j.cell.2012.01.054; pmid: 22500805

25. S. Kira et al., Dynamic relocation of the TORC1-Gtr1/2-Ego1/2/3
complex is regulated by Gtr1 and Gtr2. Mol. Biol. Cell 27, 382–396
(2016). doi: 10.1091/mbc.E15-07-0470; pmid: 26609069

26. M. P. Péli-Gulli, A. Sardu, N. Panchaud, S. Raucci, C. De Virgilio,
Amino acids stimulate TORC1 through Lst4-Lst7, a GTPase-
activating protein complex for the Rag family GTPase Gtr2.
Cell Rep. 13, 1–7 (2015). doi: 10.1016/j.celrep.2015.08.059;
pmid: 26387955

27. M. Usaj et al., TheCellMap.org: A web-accessible database for
visualizing and mining the global yeast genetic interaction
network. G3 7, 1539–1549 (2017). doi: 10.1534/g3.117.040220;
pmid: 28325812

28. Y. Sun, N. T. Leong, T. Wong, D. G. Drubin, A Pan1/End3/Sla1
complex links Arp2/3-mediated actin assembly to sites of
clathrin-mediated endocytosis. Mol. Biol. Cell 26, 3841–3856
(2015). doi: 10.1091/mbc.E15-04-0252; pmid: 26337384

29. I. V. Karpichev, G. M. Small, Global regulatory functions of
Oaf1p and Pip2p (Oaf2p), transcription factors that regulate

genes encoding peroxisomal proteins in Saccharomyces
cerevisiae. Mol. Cell. Biol. 18, 6560–6570 (1998). doi: 10.1128/
MCB.18.11.6560; pmid: 9774671

30. E. H. Hettema, R. Erdmann, I. van der Klei, M. Veenhuis, Evolving
models for peroxisome biogenesis. Curr. Opin. Cell Biol. 29, 25–30
(2014). doi: 10.1016/j.ceb.2014.02.002; pmid: 24681485

31. D. E. Bustard et al., During replication stress, non-SMC element
5 (NSE5) is required for Smc5/6 protein complex functionality
at stalled forks. J. Biol. Chem. 287, 11374–11383 (2012).
doi: 10.1074/jbc.M111.336263; pmid: 22303010

32. R. J. Chi et al., Fission of SNX-BAR-coated endosomal retrograde
transport carriers is promoted by the dynamin-related protein
Vps1. J. Cell Biol. 204, 793–806 (2014). doi: 10.1083/
jcb.201309084; pmid: 24567361

33. J. R. Whyte, S. Munro, A yeast homolog of the mammalian
mannose 6-phosphate receptors contributes to the sorting of
vacuolar hydrolases. Curr. Biol. 11, 1074–1078 (2001).
doi: 10.1016/S0960-9822(01)00273-1; pmid: 11470415

34. A. Eugster, G. Frigerio, M. Dale, R. Duden, The a- and b′-COP
WD40 domains mediate cargo-selective interactions with
distinct di-lysine motifs. Mol. Biol. Cell 15, 1011–1023 (2004).
doi: 10.1091/mbc.E03-10-0724; pmid: 14699056

35. C. A. Argmann, S. M. Houten, J. Zhu, E. E. Schadt, A next
generation multiscale view of inborn errors of metabolism.
Cell Metab. 23, 13–26 (2016). doi: 10.1016/j.cmet.2015.11.012;
pmid: 26712461

36. S. Gavrilets, in Fitness Landscapes and the Origin of Species,
S. A. Levin, H. S. Horn, Eds. (Monographs in Population
Biology, Princeton Univ. Press, 2004), pp. 149–194.

37. B. R. Foley, C. G. Rose, D. E. Rundle, W. Leong, S. Edmands,
Postzygotic isolation involves strong mitochondrial and
sex-specific effects in Tigriopus californicus, a species lacking
heteromorphic sex chromosomes. Heredity 111, 391–401
(2013). doi: 10.1038/hdy.2013.61; pmid: 23860232

38. H. A. Orr, The population genetics of speciation: The evolution
of hybrid incompatibilities. Genetics 139, 1805–1813 (1995).
pmid: 7789779

39. J. J. Welch, Accumulating Dobzhansky-Muller incompatibilities:
Reconciling theory and data. Evolution 58, 1145–1156 (2004).
doi: 10.1111/j.0014-3820.2004.tb01695.x; pmid: 15266965

40. L. C. Moyle, T. Nakazato, Hybrid incompatibility “snowballs”
between Solanum species. Science 329, 1521–1523 (2010).
doi: 10.1126/science.1193063; pmid: 20847271

41. S. Tang, D. C. Presgraves, Evolution of the Drosophila nuclear
pore complex results in multiple hybrid incompatibilities.
Science 323, 779–782 (2009). doi: 10.1126/science.1169123;
pmid: 19197064

42. S. M. Richardson et al., Design of a synthetic yeast genome.
Science 355, 1040–1044 (2017). doi: 10.1126/science.aaf4557;
pmid: 28280199

43. D. G. Gibson et al., One-step assembly in yeast of 25 overlapping
DNA fragments to form a complete synthetic Mycoplasma
genitalium genome. Proc. Natl. Acad. Sci. U.S.A. 105, 20404–20409
(2008). doi: 10.1073/pnas.0811011106; pmid: 19073939

44. C. A. Hutchison 3rd et al., Design and synthesis of a minimal
bacterial genome. Science 351, aad6253 (2016). doi: 10.1126/
science.aad6253; pmid: 27013737

45. D. G. Gibson et al., Creation of a bacterial cell controlled by
a chemically synthesized genome. Science 329, 52–56 (2010).
doi: 10.1126/science.1190719; pmid: 20488990

46. T. Wang et al., Identification and characterization of essential
genes in the human genome. Science 350, 1096–1101
(2015). doi: 10.1126/science.aac7041; pmid: 26472758

47. T. Hart et al., High-resolution CRISPR screens reveal fitness genes
and genotype-specific cancer liabilities. Cell 163, 1515–1526
(2015). doi: 10.1016/j.cell.2015.11.015; pmid: 26627737

48. V. A. Blomen et al., Gene essentiality and synthetic lethality
in haploid human cells. Science 350, 1092–1096 (2015).
doi: 10.1126/science.aac7557; pmid: 26472760

49. R. D. Dowell et al., Genotype to phenotype: A complex problem.
Science 328, 469 (2010). doi: 10.1126/science.1189015;
pmid: 20413493

50. S. K. Forsberg, J. S. Bloom, M. J. Sadhu, L. Kruglyak, Ö. Carlborg,
Accounting for genetic interactions improves modeling of
individual quantitative trait phenotypes in yeast. Nat. Genet. 49,
497–503 (2017). doi: 10.1038/ng.3800; pmid: 28250458

51. M. B. Taylor, I. M. Ehrenreich, Genetic interactions involving
five or more genes contribute to a complex trait in yeast.
PLOS Genet. 10, e1004324 (2014). doi: 10.1371/journal.
pgen.1004324; pmid: 24784154

52. M. B. Taylor, I. M. Ehrenreich, Higher-order genetic interactions
and their contribution to complex traits. Trends Genet. 31,
34–40 (2015). doi: 10.1016/j.tig.2014.09.001; pmid: 25284288

53. P. C. Phillips, Epistasis—The essential role of gene interactions
in the structure and evolution of genetic systems. Nat. Rev. Genet.
9, 855–867 (2008). doi: 10.1038/nrg2452; pmid: 18852697

54. T. B. Sackton, D. L. Hartl, Genotypic context and epistasis in
individuals and populations. Cell 166, 279–287 (2016).
doi: 10.1016/j.cell.2016.06.047; pmid: 27419868

55. A. Baryshnikova, Systematic functional annotation and
visualization of biological networks. Cell Syst. 2, 412–421
(2016). doi: 10.1016/j.cels.2016.04.014; pmid: 27237738

56. A. C. Gavin et al., Proteome survey reveals modularity of
the yeast cell machinery. Nature 440, 631–636 (2006).
doi: 10.1038/nature04532; pmid: 16429126

57. N. J. Krogan et al., Global landscape of protein complexes in
the yeast Saccharomyces cerevisiae. Nature 440, 637–643
(2006). doi: 10.1038/nature04670; pmid: 16554755

58. K. Tarassov et al., An in vivo map of the yeast protein
interactome. Science 320, 1465–1470 (2008). doi: 10.1126/
science.1153878; pmid: 18467557

59. H. Yu et al., High-quality binary protein interaction map of
the yeast interactome network. Science 322, 104–110
(2008). doi: 10.1126/science.1158684; pmid: 18719252

60. M. Babu et al., Interaction landscape of membrane-protein
complexes in Saccharomyces cerevisiae. Nature 489, 585–589
(2012). doi: 10.1038/nature11354; pmid: 22940862

61. C. Huttenhower, M. Hibbs, C. Myers, O. G. Troyanskaya,
A scalable method for integration and functional analysis of
multiple microarray datasets. Bioinformatics 22, 2890–2897
(2006). doi: 10.1093/bioinformatics/btl492; pmid: 17005538

62. Y. T. Chong et al., Yeast proteome dynamics from single cell
imaging and automated analysis. Cell 161, 1413–1424
(2015). doi: 10.1016/j.cell.2015.04.051; pmid: 26046442

63. P. Shannon et al., Cytoscape: A software environment for
integrated models of biomolecular interaction networks.
Genome Res. 13, 2498–2504 (2003). doi: 10.1101/gr.1239303;
pmid: 14597658

ACKNOWLEDGMENTS

We thank H. Friesen, J. Hou, and J. Moffat for discussions and
M. P. Masinas and J. Nelson for logistical help. Funding: This work
was primarily supported by the NIH (grant R01HG005853 to C.B.,
B.J.A., and C.L.M. and grants R01HG005084 and R01GM104975
to C.L.M.), the Canadian Institutes of Health Research (CIHR) (grants
FDN-143264 and FDN-143265 to C.B. and B.J.A.), and the NSF (grant
DBI\0953881 to C.L.M.). Computing resources and data storage
services were partially provided by the Minnesota Supercomputing
Institute and the University of Minnesota Office of Information
Technology, respectively. Additional support was provided by the
CIHR (grant MOP-79368 to G.W.B.), the NSF (DEB-1456462 to D.B.),
the Swiss National Science Foundation (R.L.), the Canton of Geneva
and the European Research Council Consolidator Grant program
(R.L.), Natural Science and Engineering Research Council of Canada
Postgraduate Scholarship-Doctoral PGS D2 (E.K.), a University of
Toronto Open Fellowship (E.K.), and a University of Minnesota
Doctoral Dissertation Fellowship (B.V). C.L.M, B.J.A., and C.B. are
fellows of the Canadian Institute for Advanced Research. Author
contributions: Conceptualization: E.K., B.V., B.J.A., C.B., and C.L.M.;
Methodology and investigation: E.K., B.V., W.W., R.D., Y.C., A.B.,
M.M.U., J.v.L., E.N.K., C.P., A.J.D., M.P., J.Z.Y.W., J.H., M.R., K.X., H.H.,
B.-J.S.L., E.S., and H.Z.; Formal analysis: E.K., B.V., W.W., M.M.U.,
E.N.K., C.P., A.J.D., J.H., K.X., H.H., M.C., R.L., A.C., D.B., and G.W.B.;
Resources: G.T.; Data curation: M.U.; Writing – original draft: E.K.,
B.V., B.J.A., C.B., and C.L.M.; Writing – review and editing: E.K., B.V.,
W.W., R.D., A.B., M.M.U., J.v.L., E.N.K., C.P., M.C., D.B., G.W.B., B.J.A.,
C.B., and C.L.M.; Supervision: B.J.A., C.B., and C.L.M.; Project
administration: N.V.D. and S.S.; Funding acquisition: B.J.A., C.B., and
C.L.M. Competing interests: The authors declare no competing
interests. Data and materials availability: All data files (data S1 to
S7) associated with this study are described in detail and available in the
supplementary materials and can be downloaded from http://
boonelab.ccbr.utoronto.ca/supplement/kuzmin2018/supplement.
html. Data files S1 to S7 have also been deposited in the DRYAD
Digital Repository (doi: 10.5061/dryad.tt367)

SUPPLEMENTARY MATERIALS

www.sciencemag.org/content/360/6386/eaao1729/suppl/DC1
Materials and Methods
Figs. S1 to S16
Tables S1 to S5
References (64–82)
Data S1 to S7

25 June 2017; accepted 23 February 2018
10.1126/science.aao1729

Kuzmin et al., Science 360, eaao1729 (2018) 20 April 2018 9 of 9

RESEARCH | RESEARCH ARTICLE
on A

pril 20, 2018
 

http://science.sciencem
ag.org/

D
ow

nloaded from
 

http://dx.doi.org/10.1126/science.1065810
http://www.ncbi.nlm.nih.gov/pubmed/11743205
http://dx.doi.org/10.1126/science.aaf1420
http://www.ncbi.nlm.nih.gov/pubmed/27708008
http://dx.doi.org/10.1038/nmeth.1534
http://www.ncbi.nlm.nih.gov/pubmed/21076421
http://dx.doi.org/10.1016/0092-8674(85)90154-0
http://www.ncbi.nlm.nih.gov/pubmed/3967297
http://dx.doi.org/10.1128/MCB.11.3.1295
http://dx.doi.org/10.1128/MCB.11.3.1295
http://www.ncbi.nlm.nih.gov/pubmed/1996092
http://dx.doi.org/10.1126/science.aag0839
http://www.ncbi.nlm.nih.gov/pubmed/27811238
http://dx.doi.org/10.1126/science.285.5429.901
http://dx.doi.org/10.1126/science.285.5429.901
http://www.ncbi.nlm.nih.gov/pubmed/10436161
http://dx.doi.org/10.1038/nature00935
http://www.ncbi.nlm.nih.gov/pubmed/12140549
http://dx.doi.org/10.1126/science.1091317
http://www.ncbi.nlm.nih.gov/pubmed/14764870
http://dx.doi.org/10.1126/science.1180823
http://www.ncbi.nlm.nih.gov/pubmed/20093466
http://dx.doi.org/10.1101/159632
http://dx.doi.org/10.1016/j.celrep.2013.05.007
http://www.ncbi.nlm.nih.gov/pubmed/23746449
http://dx.doi.org/10.1091/mbc.E08-12-1255
http://www.ncbi.nlm.nih.gov/pubmed/19458192
http://dx.doi.org/10.1126/science.1167983
http://www.ncbi.nlm.nih.gov/pubmed/19325107
http://dx.doi.org/10.1002/jcb.21225
http://www.ncbi.nlm.nih.gov/pubmed/17192843
http://dx.doi.org/10.1083/jcb.200407088
http://www.ncbi.nlm.nih.gov/pubmed/15504911
http://dx.doi.org/10.15252/embj.201696010
http://www.ncbi.nlm.nih.gov/pubmed/28096180
http://dx.doi.org/10.1016/j.cell.2012.01.054
http://dx.doi.org/10.1016/j.cell.2012.01.054
http://www.ncbi.nlm.nih.gov/pubmed/22500805
http://dx.doi.org/10.1091/mbc.E15-07-0470
http://www.ncbi.nlm.nih.gov/pubmed/26609069
http://dx.doi.org/10.1016/j.celrep.2015.08.059
http://www.ncbi.nlm.nih.gov/pubmed/26387955
http://dx.doi.org/10.1534/g3.117.040220
http://www.ncbi.nlm.nih.gov/pubmed/28325812
http://dx.doi.org/10.1091/mbc.E15-04-0252
http://www.ncbi.nlm.nih.gov/pubmed/26337384
http://dx.doi.org/10.1128/MCB.18.11.6560
http://dx.doi.org/10.1128/MCB.18.11.6560
http://www.ncbi.nlm.nih.gov/pubmed/9774671
http://dx.doi.org/10.1016/j.ceb.2014.02.002
http://www.ncbi.nlm.nih.gov/pubmed/24681485
http://dx.doi.org/10.1074/jbc.M111.336263
http://www.ncbi.nlm.nih.gov/pubmed/22303010
http://dx.doi.org/10.1083/jcb.201309084
http://dx.doi.org/10.1083/jcb.201309084
http://www.ncbi.nlm.nih.gov/pubmed/24567361
http://dx.doi.org/10.1016/S0960-9822(01)00273-1
http://www.ncbi.nlm.nih.gov/pubmed/11470415
http://dx.doi.org/10.1091/mbc.E03-10-0724
http://www.ncbi.nlm.nih.gov/pubmed/14699056
http://dx.doi.org/10.1016/j.cmet.2015.11.012
http://www.ncbi.nlm.nih.gov/pubmed/26712461
http://dx.doi.org/10.1038/hdy.2013.61
http://www.ncbi.nlm.nih.gov/pubmed/23860232
http://www.ncbi.nlm.nih.gov/pubmed/7789779
http://dx.doi.org/10.1111/j.0014-3820.2004.tb01695.x
http://www.ncbi.nlm.nih.gov/pubmed/15266965
http://dx.doi.org/10.1126/science.1193063
http://www.ncbi.nlm.nih.gov/pubmed/20847271
http://dx.doi.org/10.1126/science.1169123
http://www.ncbi.nlm.nih.gov/pubmed/19197064
http://dx.doi.org/10.1126/science.aaf4557
http://www.ncbi.nlm.nih.gov/pubmed/28280199
http://dx.doi.org/10.1073/pnas.0811011106
http://www.ncbi.nlm.nih.gov/pubmed/19073939
http://dx.doi.org/10.1126/science.aad6253
http://dx.doi.org/10.1126/science.aad6253
http://www.ncbi.nlm.nih.gov/pubmed/27013737
http://dx.doi.org/10.1126/science.1190719
http://www.ncbi.nlm.nih.gov/pubmed/20488990
http://dx.doi.org/10.1126/science.aac7041
http://www.ncbi.nlm.nih.gov/pubmed/26472758
http://dx.doi.org/10.1016/j.cell.2015.11.015
http://www.ncbi.nlm.nih.gov/pubmed/26627737
http://dx.doi.org/10.1126/science.aac7557
http://www.ncbi.nlm.nih.gov/pubmed/26472760
http://dx.doi.org/10.1126/science.1189015
http://www.ncbi.nlm.nih.gov/pubmed/20413493
http://dx.doi.org/10.1038/ng.3800
http://www.ncbi.nlm.nih.gov/pubmed/28250458
http://dx.doi.org/10.1371/journal.pgen.1004324
http://dx.doi.org/10.1371/journal.pgen.1004324
http://www.ncbi.nlm.nih.gov/pubmed/24784154
http://dx.doi.org/10.1016/j.tig.2014.09.001
http://www.ncbi.nlm.nih.gov/pubmed/25284288
http://dx.doi.org/10.1038/nrg2452
http://www.ncbi.nlm.nih.gov/pubmed/18852697
http://dx.doi.org/10.1016/j.cell.2016.06.047
http://www.ncbi.nlm.nih.gov/pubmed/27419868
http://dx.doi.org/10.1016/j.cels.2016.04.014
http://www.ncbi.nlm.nih.gov/pubmed/27237738
http://dx.doi.org/10.1038/nature04532
http://www.ncbi.nlm.nih.gov/pubmed/16429126
http://dx.doi.org/10.1038/nature04670
http://www.ncbi.nlm.nih.gov/pubmed/16554755
http://dx.doi.org/10.1126/science.1153878
http://dx.doi.org/10.1126/science.1153878
http://www.ncbi.nlm.nih.gov/pubmed/18467557
http://dx.doi.org/10.1126/science.1158684
http://www.ncbi.nlm.nih.gov/pubmed/18719252
http://dx.doi.org/10.1038/nature11354
http://www.ncbi.nlm.nih.gov/pubmed/22940862
http://dx.doi.org/10.1093/bioinformatics/btl492
http://www.ncbi.nlm.nih.gov/pubmed/17005538
http://dx.doi.org/10.1016/j.cell.2015.04.051
http://www.ncbi.nlm.nih.gov/pubmed/26046442
http://dx.doi.org/10.1101/gr.1239303
http://www.ncbi.nlm.nih.gov/pubmed/14597658
http://boonelab.ccbr.utoronto.ca/supplement/kuzmin2018/supplement.html
http://boonelab.ccbr.utoronto.ca/supplement/kuzmin2018/supplement.html
http://boonelab.ccbr.utoronto.ca/supplement/kuzmin2018/supplement.html
http://doi: 10.5061/dryad.tt367
http://www.sciencemag.org/content/360/6386/eaao1729/suppl/DC1
http://science.sciencemag.org/


Systematic analysis of complex genetic interactions

Brenda J. Andrews, Charles Boone and Chad L. Myers
Zhu, Nydia Van Dyk, Sara Sharifpoor, Michael Costanzo, Robbie Loewith, Amy Caudy, Daniel Bolnick, Grant W. Brown, 
Yang Wang, Julia Hanchard, Margot Riggi, Kaicong Xu, Hamed Heydari, Bryan-Joseph San Luis, Ermira Shuteriqi, Hongwei
Mojca Mattiazzi Usaj, Jolanda van Leeuwen, Elizabeth N. Koch, Carles Pons, Andrius J. Dagilis, Michael Pryszlak, Jason Zi 
Elena Kuzmin, Benjamin VanderSluis, Wen Wang, Guihong Tan, Raamesh Deshpande, Yiqun Chen, Matej Usaj, Attila Balint,

DOI: 10.1126/science.aao1729
 (6386), eaao1729.360Science 

, this issue p. eaao1729; see also p. 269Science
interactions were more likely to bridge biological processes in the cell.
digenic interaction landscape. Although the overall effects were weaker for trigenic than for digenic interactions, trigenic
trigenic associations functioned within the same biological processes. These converged on networks identified in the 

withsynthetic genetic array (see the Perspective by Walhout). Triple-mutant analyses indicated that the majority of genes 
 created a trigenic landscape of yeast by using aet al.Building on the digenic protein-protein interaction network, Kuzmin 

To dissect the genotype-phenotype landscape of a cell, it is necessary to understand interactions between genes.
Trigenic interactions in yeast link bioprocesses
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