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Genetic interactions identify combinations of genetic variants that impinge on phenotype. With
whole-genome sequence information available for thousands of individuals within a species, a
major outstanding issue concerns the interpretation of allelic combinations of genes underlying
inherited traits. In this Review, we discuss how large-scale analyses in model systems have
illuminated the general principles and phenotypic impact of genetic interactions. We focus on
studies in budding yeast, including the mapping of a global genetic network. We emphasize how
information gained from work in yeast translates to other systems, and how a global genetic
network not only annotates gene function but also provides new insights into the genotype-to-
phenotype relationship.
Context
Geneticists have long appreciated the major impact that genetic

interactions (GIs) can have on the phenotypic landscape of a

population. In 1909, William Bateson ascribed ‘‘epistasis’’ to a

specific type of GI, whereby one mutation masks the effects of

another mutation, such that a double mutant resembles the

more extreme single mutant rather than the expected combined

effect of both mutations, a concept useful for inferring biological

pathways. Ronald Fisher generalized this term to include any

multi-locus mutant effect that deviates from the expected

phenotype associated with combining of the corresponding indi-

vidual loci (Fisher, 1918). While the term epistasis has since

evolved many different meanings, Fisher’s generalized concept

of epistasis informs how we define a GI today.

GIs are thought to underlie diverse aspects of biology,

including the evolution of sex, speciation, and complex disease

(Phillips et al., 2000). Despite their central importance and the

ability for comprehensive genotyping through whole-genome

sequencing, the mapping of critical GIs associated with the nat-

ural variation within an individual’s genome remains incredibly

difficult (Zuk et al., 2012). However, inbred model systems,

such as yeast and worms, as well as cell cultures derived from

fruit flies andmammals, provide an experimental format for map-

ping GIs systematically through the utilization of genome-wide

collections of either defined mutants or gene perturbation sys-

tems (e.g., libraries of double-stranded RNAs, shRNAi,

CRISPR-based approaches)(Bassik et al., 2013; Blomen et al.,

2015; Byrne et al., 2007; Costanzo et al., 2016; Dixon et al.,

2008; Du et al., 2017; Fischer et al., 2015; Han et al., 2017; Horl-

beck et al., 2018; Lehner et al., 2006; Najm et al., 2018; Roguev

et al., 2008; Shen et al., 2017; Vizeacoumar et al., 2013). Impor-

tantly, with prior knowledge of the general principles of genetic
networks derived from model systems, it may be possible to

map GIs and networks based upon natural variation of individ-

uals in outbred populations.

The concept of GIs is simple, but the physiological repercus-

sions can be profound. A GI between two genes occurs when

an allele of one gene combines with an allele of another gene

to generate a double mutant with an unexpected phenotype.

The phenotype may be the exacerbation of the expected com-

bined single-mutant phenotypes—a so-called negative GI. The

most extreme negative GI phenotype is ‘‘synthetic lethality’’,

which occurs when the combination of two mutations, neither

by itself lethal, causes lethality. Geneticist Theodosius Dobzhan-

sky first coined the term synthetic lethality when he observed

that a cross of outbred flies, isolated from natural populations,

revealed a lethal developmental defect that could be traced

back to two different genes, one from each parent (Dobzhansky,

1946).

Decades later, the yeast community began to embrace the po-

tential of synthetic lethal GIs to reveal functional relationships.

Pioneering genetic screens from David Botstein’s group were

aimed at revealing the genetic network controlling cytoskeletal

dynamics in yeast. Some of the first examples of synthetic

lethality were observed for a combination of partial loss-of-func-

tion mutant alleles in TUB1 and TUB3 (Stearns and Botstein,

1988), both of which encode a-tubulin, the major component of

the microtubule cytoskeleton, highlighting the essential role of

this paralog pair. Another type of GI was demonstrated by a

study that was designed to identify mutants that carry a suppres-

sor of conditional temperature-sensitive (TS) alleles in ACT1,

yeast’s single actin gene (Novick et al., 1989). This screen iden-

tified an allele in the SAC1 gene, sac1-6, as a suppressor of the

act1-1 TS allele, enabling act1-1 sac1-6 double-mutant cells to
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Figure 1. A Graphical Representation of Quantitative Genetic

Interactions
(A–C) Wild-type fitness is defined as 1.0 and each single mutant (A and B)
exhibits a fitness defect relative to wild-type. (A) Negative GIs. A negative GI
(e.g., synthetic lethal or synthetic sick interaction) occurs if the observed
fitness of the double mutant is less than the double mutant fitness expected
from amultiplicative model. (B) Symmetric positive interactions. In this specific
case, each single mutant (A and B) exhibits a two-fold fitness defect (0.5)
relative to wild-type (1.0). The fitness of the resultant AB double mutant is
greater than expected (0.25) and identical to the fitness of the two single
mutants (0.5). Symmetric positive interactions are enriched among members
of the same nonessential protein complex. (C) Asymmetric positive in-
teractions. In this case, single mutants and double mutants differ in fitness.
Positive interactions that deviate from expectation allow classification into
masking or suppression subcategories.
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grow at the restrictive temperature. This is an extreme example

of a positive GI, where the double mutant grows better than

expected based on the phenotype predicted for the combined

single mutants. Interestingly, when sac1-6 was crossed to a

different actin TS allele, act1-2, the resulting act1-2 sac1-6 dou-

ble mutant was synthetically lethal. Subsequent work showed

that SAC1 encodes a phosphatidylinositol phosphate phospha-

tase, and thus a role for phosphatidylinositol signaling and actin

dynamics was revealed by both genetic suppression and syn-

thetic lethal GIs between ACT1 and SAC1 (Novick et al., 1989).

Panels of defined mutants can be crossed directly to one

another to generate double mutants and identify novel GIs. For

example, the analysis of TS alleles of genes required for secre-

tory pathway activity revealed that specific subsets of genes

involved in either vesicle budding or vesicle fusion tend to be

synthetic lethal with one another (Kaiser and Schekman, 1990).

This study clearly demonstrates that synthetic lethal GIs are

driven by functional specificity, a powerful notion that inspired

the development and implementation of the first yeast synthetic

lethal screen based on an elegant colony-sectoring assay

(Bender and Pringle, 1991). In this assay, a query gene is deleted,

and the same gene is placed on a plasmid whose requirement for

growth can be monitored using a simple visual assessment of

red and white sectoring in yeast colonies. A colony sectoring

screen using a strain mutated for MSB1, a poorly characterized

gene implicated in bud emergence, identified two genes, BEM1

and BEM2, as synthetic lethal interacting partners. Subsequent

work revealed that Bem1 is a scaffold for major signaling mole-

cules involved in cell polarity, while Bem2 is a Rho GTPase acti-

vation protein involved in budding (Bi and Park, 2012). Thus, a

synthetic lethal screen involving a relatively uncharacterized

gene identified two significant regulators of cell polarity and

bud emergence, developmental programs that are controlled

by conserved signaling pathways.

Types of GIs

GIs can be quantified by measuring single- and double-mutant

phenotypes and calculating an interaction factor that reflects

any deviation from the expected combined effect of the single

mutants. For yeast cell fitness or growth phenotypes, the most

widely adopted model combines the phenotypes, associated

with mutations in independent genes, using a multiplicative

equation (Mani et al., 2008; Phillips et al., 2000). Thus, the pheno-

type expected for a double mutant is predicted to be equivalent

to the product of the phenotypes associated with the corre-

sponding singlemutants. Consequently, as illustrated in Figure 1,

GIs are scored by detecting double mutants whose phenotype

differs from the expected value.

In principle, any phenotype could be used to detect GIs, but a

cell growth phenotype, which can be readily measured and

quantified, integrates cellular physiology and has proven func-

tionally informative for exploring GIs in both yeast and animal

cells. For fitness phenotypes, negative GIs are scoredwhen dou-

ble mutants display a more severe growth phenotype than ex-

pected, including synthetic sickness and synthetic lethality

(Figure 1) (Dobzhansky, 1946; Mani et al., 2008; Phillips et al.,

2000). In contrast, positive GIs are scored in double mutants

that show a less severe phenotype than expected based on

the multiplicative model (Mani et al., 2008; St Onge et al.,



2007). Positive GIs can be classified into categories associated

with a different mechanistic basis (Figure 1) (Drees et al., 2005;

Mani et al., 2008; St Onge et al., 2007). For example, when dele-

tion of any gene encoding a member of the same nonessential

protein complex eliminates complex activity, the phenotypes of

single and double mutants involving protein complex members

are expected to be quantitatively indistinguishable (Figure 1)

(Drees et al., 2005; Mani et al., 2008; St Onge et al., 2007). This

means that the double mutant does not conform to the expected

multiplicative model but rather shows a symmetrical positive GI.

Positive GIs can also be asymmetric, in which the strength of the

phenotypic effect varies between single and double mutants.

The asymmetric subclass includes so-called masking interac-

tions, where the fitness of the double mutant is better than ex-

pected, resembling that of the sickest single mutant (Figure 1)

(Drees et al., 2005; Mani et al., 2008; St Onge et al., 2007). Ge-

netic suppression represents a mechanistically important but

relatively rare asymmetric positive GI, such that the double-

mutant phenotype fitness is greater than that of the sickest single

mutant (Figure 1) (Baryshnikova et al., 2010; Drees et al., 2005; St

Onge et al., 2007). Genetic suppression can result from the com-

bination of two loss-of-function mutations but often involves

specialized allelic combinations and is thus a relatively small

subset of the positive interactions observed in large-scale sur-

veys of mutants with general defects in gene function (Costanzo

et al., 2016; van Leeuwen et al., 2016).

Mapping a Reference GI Network
As mentioned above, systematic mutant collections and gene

editing tools have been developed and applied to explore GIs

on a large-scale in several model microbial systems, including

Escherichia coli (Butland et al., 2008; Typas et al., 2008) and

the fission yeast Schizosaccharomyces pombe (Dixon et al.,

2008; Roguev et al., 2008), as well as in the Caenorhabditis

elegans metazoan model system (Byrne et al., 2007; Lehner

et al., 2006) and cultured Drosophila melanogaster cell lines

(Fischer et al., 2015). However, by far the most comprehensive

analyses of GI mapping efforts have involved the budding yeast,

Saccharomyces cerevisiae model system, which we review in

detail below.

Genome-wide Yeast Mutant Collections

With its elegant and facile genetics, the budding yeast Saccharo-

myces cerevisiae has been the eukaryotic model of choice for

exploring the fundamental biology of eukaryotic cells at a molec-

ular level and yeast has served as a primary test bed for develop-

ment of most functional genomic methodologies. Systematic

genetic and phenotypic analyses have been enabled by collab-

orative community efforts to create genome-wide mutant collec-

tions, within the context of reference strain background. A con-

sortium of groups developed a comprehensive collection of

deletion mutants where each of the �6,000 yeast open reading

frames was replaced with a dominant, drug resistance marker

flanked by unique synthetic ‘‘barcode’’ sequences. This system-

atic endeavor defined the set of �1,000 genes essential for

viability in laboratory growth conditions and generated a set of

�5,000 viable haploid deletion mutants (Winzeler et al., 1999).

More recently, complementary strain collections have also

been constructed in which subsets of the�1,000 essential yeast
genes are individually altered to produce conditional or hypo-

morphic alleles (see Costanzo et al., 2016) that can be assayed

at a semi-permissive state, enabling systematic scrutiny of this

highly conserved set of genes. As described below, these ar-

rayed mutant collections have catalyzed the development and

application of high-throughput methodologies for systematic

GI analysis and mapping of the yeast GI network.

Yeast GI Mapping Technologies

Synthetic genetic array (SGA) analysis is an automated method

that combines arrays of either non-essential gene deletion mu-

tants, or arrays of yeast strains carrying conditional alleles of

essential genes, with robotic manipulation for high-throughput

construction of combinations of mutant alleles and identification

of GIs (Tong et al., 2004). In its first large-scale application, SGA

methodology was used to cross �130 gene-specific query

mutant strains to the complete array of �5,000 viable haploid

deletion mutants, resulting in a network consisting of �1,000

genes and �4,000 synthetic lethal or sick digenic interactions

(Tong et al., 2004). Complementary methods have been devel-

oped to map S. cerevisiae GIs in pooled cultures, including

dSLAM (Pan et al., 2004), GI mapping (GIM) (Decourty et al.,

2008), barcode fusion genetics (BFG-GI) (Dı́az-Mejı́a et al.,

2018), and iSeq (Jaffe et al., 2017). These various methods

have been applied to identify GIs associated with subsets

of genes annotated to specific bioprocesses, including DNA

integrity (Pan et al., 2006) and mRNA processing (Decourty

et al., 2008), as well as GIs among selected genes in response

to DNA damaging agents (Dı́az-Mejı́a et al., 2018). However,

comprehensive SGA analysis has been the most extensively

used method for GI studies (for example, Collins et al., 2007;

Schuldiner et al., 2005; Tong et al., 2004) and its large-scale

application enabled mapping of a global GI network for budding

yeast (Costanzo et al., 2010, 2016).

Quantitative Analysis of GIs

As described above, negative or positive GIs between a pair of

genes can be experimentally defined based on the comparison

of three properties: the single mutant phenotypes, an estimate

of the expected double mutant phenotype, and a measurement

of the observed double mutant phenotype. In theory, a GI can be

identified using any quantitative phenotypic assay. Indeed, GIs in

yeast have been revealed by accurately monitoring gene expres-

sion (van Wageningen et al., 2010), filamentous growth (Drees

et al., 2005), receptor endocytosis (Burston et al., 2009), and

the unfolded protein response (Jonikas et al., 2009). Flux balance

analysis has also been used to detect GIs in silico using pre-

dicted changes in yeast biomass production as a phenotypic

readout (Segrè et al., 2005). However, most large-scale efforts

to map quantitative genetic networks in yeast have focused on

colony size as a proxy for cell growth or fitness, a phenotype

that is easily quantified and arguably integrates the general

‘‘state’’ of the cell (Baryshnikova et al., 2010; Collins et al.,

2006). Alternative methods that have been used to quantify GIs

include: (1) profiling of growth in liquid culture to assess GIs be-

tween a subset of genes involved in DNA replication and repair

(St Onge et al., 2007); (2) the use of fluorescence-labeled popu-

lations of wild-type cells co-cultured with either single or double

mutant yeast strains to map a quantitative GI network for genes

encoding components of the 26S proteasome (Breslow et al.,
Cell 177, March 21, 2019 87



2008)—of note, this map was based on hypomorphic protea-

some alleles designed to reduce mRNA stability, a type of

mutation that may be associated with different GIs, both in

terms of type and strength, than those associated with TS alleles

(Breslow et al., 2008); and (3) a competitive growth assay to

quantify GIs between duplicated genes (DeLuna et al., 2008).

Although these methods provided considerable new insights

into conserved biological processes and features, they have

not yet been applied to genome-scale studies.

AFunctionalMap of aCell: GI Profiles Identify Functional

Relationships between Genes

Early studies using SGA (Tong et al., 2004) demonstrated that the

set of synthetic lethal GIs for a given gene, termed a GI profile,

provides a rich phenotypic signature indicative of gene function.

As a result, grouping genes according to their GI profiles, using

standard clustering algorithms, is an effective and powerful

way to precisely predict gene function (Tong et al., 2004). As

described above, the use of quantitative assays of colony size

(Baryshnikova et al., 2010; Collins et al., 2006) generates rich

GI profiles for each query gene. These enriched profiles further

demonstrate that genes belonging to similar biological pro-

cesses share overlapping subsets of both negative and positive

GIs, clearly highlighting that genes encoding proteins that

function together in the same pathway or protein complex often

display highly similar GI profiles (Bandyopadhyay et al., 2008;

Collins et al., 2007; Costanzo et al., 2010, 2016; Kelley and

Ideker, 2005; Tong et al., 2004).

The combination of SGA with a genome-scale colony size-

scoring methodology enabled assessment of growth defects

associated with the majority of all possible yeast gene pairs

(�18 million). These large-scale studies measured single-

and double-mutant fitness to identify nearly one million GIs

(�550,000 negative and �350,000 positive), enabling assembly

of the first complete GI network for any organism (Costanzo

et al., 2010, 2016). Importantly, genome-wide GI analysis

required the analysis of essential genes, which was achieved

through the construction of a comprehensive set of mutants car-

rying conditional temperature-sensitive (TS) alleles. Essential

genes participate in �5-fold more negative and positive interac-

tions than nonessential genes, showing that essential genes

represent highly connected network hubs. Moreover, the GI pro-

files of essential genes provide more accurate gene function

predictions across diverse biological processes, indicating that

essential genes form the basic scaffold of the global GI network

(Costanzo et al., 2016). Since essential genes are more

conserved than non-essential genes and participate in a large

fraction of the interactions on the global yeast genetic network,

they may define a GI network that is generally conserved.

Quantitative GI profiles, comprised of both essential and non-

essential genes, enabled construction of a global network in

which genes with similar interactions patterns are located close

to one another (Figure 2) (Costanzo et al., 2010, 2016). Conse-

quently, the resultant network groups genes into obvious clus-

ters and, when scrutinized for varying levels of genetic profile

similarity, provides a hierarchical view of the functional organiza-

tion within a cell (Figure 2) (Costanzo et al., 2010, 2016; Dutkow-

ski et al., 2013; Ma et al., 2018). For example, at the most

stringent level of network resolution, where genes share many
88 Cell 177, March 21, 2019
common GIs, the clusters are comprised of relatively small,

densely connected modules corresponding to known protein

complexes and biological pathways (Figure 2). At an intermedi-

ate level of network resolution, functionally related pathway

and protein complex modules, such as ‘‘kinetochore’’ or ‘‘GPI-

anchor’’, are grouped together to highlight distinct biological

processes, including large subsets of genes annotated with gen-

eral roles in different bioprocesses, such as ‘‘DNA replication

and repair’’ or ‘‘cell polarity and morphogenesis’’ (Figure 2). At

the most general level of network resolution, bioprocess gene

clusters group together into larger modules corresponding

to specific cellular compartments, such as ‘‘nucleus’’ or ‘‘ER’’

(Figure 2) (Costanzo et al., 2016). In other words, computational

visualization of the results of systematic quantitative analysis of a

simple growth phenotype provides a remarkably nuanced view

of cell function, ranging from known subcellular organelles to

protein complexes. Importantly, the functional organization

embedded within the global genetic network is not completely

captured by available functional standards, including the gene

ontology (GO), emphasizing the need for unbiased, genome-

scale studies to accurately describe cell function (Costanzo

et al., 2016; Dutkowski et al., 2013; Ma et al., 2018). The global

genetic profile similarity network also provides a powerful

resource for precise functional predictions because the network

position and connectivity of a particular gene reflects its cellular

role (Costanzo et al., 2016). A gene whose GI profile includes

subsets of genes that cluster into several bioprocesses may

reflect a highly pleiotropic function, such as that associated

with molecular chaperones like Hsp90, which controls many

signaling pathways.

Functional Information Associated with Negative or

Positive GIs

Negative GIs, for both nonessential and essential genes, overlap

significantly with other types of molecular interactions (Costanzo

et al., 2016). For example, a negative GI can be highly predictive

of a physical interaction because�50% (�10-fold enrichment) of

essential gene pairs that encode physically interacting proteins

are also connected by a negative GI (Costanzo et al., 2016).

Moreover, the likelihood of observing a negative GI is correlated

with the functional overlap shared between a given pair of genes.

This means that the closer two genes are within the hierarchical

model of cell function, themore likely they are to show a negative

GI (Figures 3A and 3B) (Costanzo et al., 2016). Likewise,

the strength of the GI is also associated with the extent of func-

tional similarity, such that stronger GIs tend to connect genes

with closer functional relationships, which suggests that the

functional relationship between two genes can be quantified

based on the strength of their negative interaction (Costanzo

et al., 2016).

Positive GIs can also capture functional relationships between

non-essential gene pairs because, in certain situations, they can

overlap with protein-protein interactions (Bandyopadhyay et al.,

2008; Baryshnikova et al., 2010; Costanzo et al., 2010, 2016;

Mani et al., 2008; St Onge et al., 2007). Specifically, if any defect

in a single complex component produces a null phenotype, then

the simultaneous perturbation of two genes encoding members

of the same nonessential protein complex will show a fitness

defect equivalent to that of the single mutants (Costanzo et al.,



Figure 2. A Functional Map of a Yeast Cell
(A) A global genetic profile similarity network en-
compassing most nonessential and essential genes
was constructed by computing Pearson correlation
coefficients (PCCs) for GI profiles of all pairs of
genes (nodes). Gene pairs whose profile similarity
exceeded a PCC >0.2 were connected and graphed
using a spring-embedded layout algorithm (Smoot
et al., 2011). Genes sharing similar GIs profiles map
proximal to each other, whereas genes with less
similar GI profiles are positioned further apart.
(B–D) The global GI profile similarity network is
organized as a hierarchy of functional modules en-
riched for specific (B) cellular compartments, (C)
biological processes, or (D) protein complexes and
pathways. Functional annotation of the networks
was done using Spatial Analysis of Functional
Enrichment (SAFE) (Baryshnikova, 2016). Adapted
from (Costanzo et al., 2016).
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Figure 3. Mapping Negative and Positive Interactions across the Genetic Network-Based Functional Hierarchy
(A) Schematic representation of the genetic network–based functional hierarchy illustrating functionally defined clusters of interactions between genes within the
same complex/pathway, bioprocess, or cellular compartment, as well as distant interactions that span two different cellular compartments.
(B) The frequency of GIs between genes in the same functional cluster (as defined in (A)), at a given level of profile similarity (PCC) in the genetic network hierarchy
for negative (blue) or positive (yellow) GIs. Dashed lines indicate the PCC range within which clusters in the genetic network hierarchy were enriched for cell
compartments, bioprocesses, and protein complexes.
(C) Functional wiring diagram from the 19S proteasome identifies within pathway modules (WPM) and between pathway modules (BPM) of GIs. (i) Regions of the
yeast global similarity network significantly enriched for genes exhibiting negative (blue) or positive (yellow) GIs with 19S proteasome genes are shown using
SAFE (Baryshnikova, 2016). (ii) Genes belonging to a subset of protein complexes that showed coherent negative (blue) or positive (yellow) GIs with genes
encoding the 19S proteasome. Adapted from (Costanzo et al., 2016).
2016; Mani et al., 2008; Segrè et al., 2005; St Onge et al., 2007).

However, this subclass of positive GIs accounts for only a small

fraction of those observed for nonessential gene pairs (Costanzo

et al., 2010; Costanzo et al., 2016). The vast majority of all

positive interactions, especially those involving essential genes,

do not share any direct functional relationship (Figures 3A and

3B). Instead, positive interactions tend to connect genes whose

products function in different cell compartments and capture

more general regulatory connections, associated with cell-cycle

progression or mRNA and protein turnover (Costanzo et al.,

2016). For example, TS alleles, which may lower protein levels

or reduce protein activity, often show positive interactions with

genes involved in protein degradation. In contrast, mutant alleles

of essential genes that may lower mRNA levels (Breslow et al.,

2008; Schuldiner et al., 2005) tend to share numerous positive
90 Cell 177, March 21, 2019
GIs with genes involved in mRNA turnover (Costanzo et al.,

2016). Thus, while negative GIs identify clear functional relation-

ships between genes, positive GIs reflect more general regula-

tory connections related to protein homeostasis and cell-cycle

kinetics. While positive GIs associated with two loss-of-function

alleles do not generally connect functionally related genes, sup-

pression interactions involving specific gene pairs, an important

subclass of the strongest positive GIs, are highly predictive

of shared function and are described in more detail below (see

section ‘‘Genetic Suppression and Modifier Effects’’).

Genetic Network Structure and Topology

Consistent with a previous theoretical analysis (Segrè et al.,

2005), negative and positive GIs tend to be highly organized,

often occurring in coherent sets such that genes within the

same protein complex or pathway are connected by a single



type of interaction, either negative or positive, forming a local ge-

netic network structure, referred to as a within pathway module

(WPM) (Bandyopadhyay et al., 2008; Baryshnikova et al., 2010;

Bellay et al., 2011; Costanzo et al., 2010, 2016; Kelley and Ideker,

2005). The type of interaction depends on essentiality because

WPMs that are comprised of nonessential genes are enriched

for positive GIs, whereas essential gene WPMs are enriched

for negative GIs (Bandyopadhyay et al., 2008; Baryshnikova

et al., 2010; Bellay et al., 2011; Costanzo et al., 2016). Indeed,

�80% of WPMs corresponding to essential protein complexes

are enriched for negative GIs among their members (Costanzo

et al., 2016). This remarkable overlap of protein interactions

and GIs highlights the reduced ability of a cell to tolerate multiple

mutations in the same essential complex and provides a road-

map for both discovering and predicting GIs in other organisms,

including humans. In addition to WPM structures, GIs occurring

between functional modules are also highly organized, whereby

pairs of complexes or pathways tend to be connected exclu-

sively by negative GIs or only by positive GIs, forming a network

structure referred to as a between pathway module (BPM)

(Bandyopadhyay et al., 2008; Bellay et al., 2011; Costanzo

et al., 2010, 2016; Kelley and Ideker, 2005).

Previous studies highlighted the prevalence of these types

of genetic network structures (Bandyopadhyay et al., 2008; Bel-

lay et al., 2011; Kelley and Ideker, 2005), and a survey of the

yeast genetic network revealed that most negative GIs appear

in WPMs and/or BPMs (Bellay et al., 2011). Indeed, WPMs and

BPMs derived from the yeast global genetic network map a

highly organized functional wiring diagram that defines specific

modules and reveals functional relationships between modules

(Costanzo et al., 2016). For example, negative GIs occur among

genes encoding members of the 19S proteasome, reflecting the

essential role of this complex (Figure 3C). Negative GIs also con-

nect the 19S proteasome and the APC (anaphase promoting

complex), which controls mitotic exit, reflecting that their com-

bined roles are critical for cell-cycle progression. In contrast,

positive GIs connect the 19S proteasome and the Prefoldin co-

chaperone complex, which may indicate that these complexes

work in tandem to monitor protein folding and degradation

(Figure 3C) (Costanzo et al., 2016). The prevalence of coherent

module structures in the yeast reference GI network has prac-

tical implications that may facilitate discovery of disease-rele-

vant GIs in human genotyping datasets (Wang et al., 2017b),

as discussed further below (see sections ‘‘Human GI Networks

and Cancer’’ and ‘‘Translating Insights from Model System

Genetic Networks to Human Populations’’).

Condition-Specific GI Networks
While a global genetic network reveals the fundamental organi-

zation of a cell (Costanzo et al., 2016), a complete analysis

should include an understanding of network dynamics in

response to developmental programs, environmental changes,

as well as different genetic backgrounds (see section ‘‘Complex

GIs’’). Indeed, cataloging the global genetic network showed

that �20% (�1,000) of yeast genes are refractory to SGA GI

profiling in standard laboratory growth conditions because

they exhibit relatively few double mutant interactions precluding

accurate assessment of their functional connections (Costanzo
et al., 2016). A comprehensive understanding of gene function

and GI networks therefore requires further analysis in a variety

of different settings that depend on the activity of otherwise

dispensable genes.

Previous studies measured condition-specific or differential

GIs in the absence and presence of DNA damaging agents (Ban-

dyopadhyay et al., 2010; Dı́az-Mejı́a et al., 2018; Guénolé et al.,

2013; St Onge et al., 2007) as well as stress conditions known to

trigger mitogen-activated protein kinase signaling pathways

(Martin et al., 2015) or the autophagy program (Kramer et al.,

2017). The resultant differential GI networks recapitulated known

condition-specific functional interactions and identified novel

connections between gene pairs that could not be detected

in the absence of a particular environmental stimulus. Thus,

differential GI network analysis appears to highlight subsets of

genes with condition-specific interactions, uncovering dynamic

connections between pathways and protein complexes.

However, the influence of environmental factors on overall

network structure and topology and how the global network

changes in response to different environments remains unclear.

A theoretical analysis based on metabolic models and flux

balance analysis predicted that only a fraction of all GIs may

be revealed when examining a single environmental condition

(Harrison et al., 2007). Indeed, while the average nonessential

gene shares a negative GI with �2% of other nonessential

ORFs in the yeast genome, genes important for metabolic

processes are statistically underrepresented in the GI network

(Costanzo et al., 2010). However, careful scrutiny of GIs involving

genes functioning in specific biological processes, such as

DNA replication and repair, showed relatively few new DNA

damage-specific negative interactions compared to the number

of negative GIs identified for the same set of genes under non-

DNA-damaging conditions (Bandyopadhyay et al., 2010; Gué-

nolé et al., 2013). Thus, while genes in specific bioprocesses

may undergo local rewiring by gaining or losing functionally rele-

vant GIs in a condition-specific manner, it is possible that the

overall structure and topology of the global genetic network

remains relatively robust to conditional and environmental influ-

ences, a concept that remains to be systematically explored.

Chemical GIs

A chemical-genetic interaction occurs when a specific mutant is

either hypersensitive or resistant to a compoundwhen compared

to a wild-type control. If a compound precisely inhibits a target

protein that is required for yeast growth, loss-of-function muta-

tions in the target gene should model the cell’s physiological

response to the compound (Marton et al., 1998). A genome-

wide set of yeast mutants, including deletion alleles of nonessen-

tial genes and partial loss-of-function alleles of essential genes,

can be scored for hypersensitivity or resistance to a specific

compound to generate a chemical-genetic profile (Hoepfner

et al., 2014; Lee et al., 2014; Piotrowski et al., 2017). By similarity

analysis, a global network of GI profiles provides a guide for inter-

preting chemical-genetic interaction profiles and thereby linking

compounds to their target pathway (Costanzo et al., 2010;

Piotrowski et al., 2017). For example, the GI profile associated

with a partial loss-of-function mutation in the essential gene

ERG11, which encodes the target of fluconazole, closely resem-

bles the chemical-genetic interaction profile of fluconazole.
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Figure 4. Genetic Suppression Interactions
(A) Example of a distribution of negative (blue) and positive (yellow) GIs of mutant yyyD determined by a genome-wide screen. The GI score is defined as the
difference between the observed and the expected double mutant fitness (see Figure 1). Spontaneous suppressor mutations often represent the most extreme,
strong positive GIs, as indicated. (B) An example of a gene pair (CDC25 andRAS2) illustrating suppression, dosage suppression, and negative GIs. Lightly shaded
proteins are encoded by partial loss-of-function alleles with reduced signaling activity, Ras2* is encoded by a gain-of-function allele with increased signaling
activity. Adapted from (van Leeuwen et al., 2016).
With barcoded yeast strains, thousands of mutants can be

analyzed for chemical-genetic interactions in parallel and a small

diagnostic set of yeast mutants enables high throughput profiling

of large compound libraries providing an unbiased method for

functional characterization of entire libraries (Piotrowski et al.,

2017). Target prediction is resolved to the level of the bio-

process, such that compounds can be linked to cellular func-

tions such as ‘Cell Polarity and Morphogenesis’ or ‘Mitosis and

Chromosome Segregation’ (Piotrowski et al., 2017). Compounds

that are associated with specific bioprocesses can be examined

in more detail with genome-wide mutant pools, which may lead

to a more refined pathway-level of functional resolution.

Haploinsufficiency chemical-genetic profiling has the potential

to link a compound to its target gene directly (Giaever et al.,

1999). In yeast, diploid cells can generally tolerate the deletion

of one copy of most essential genes, and the resultant heterozy-

gous deletion mutants usually fail to show a fitness defect.

Heterozygous diploids deleted for one copy of a specific gene,

should generally have less of the corresponding gene product,

and therefore be sensitive to compounds that inhibit the target

gene product (Giaever et al., 1999). For example, an erg11/

ERG11 heterozygous diploid is more sensitive to fluconazole

than any other diploid heterozygous for deletion of an essential

gene. A complete set of barcoded, heterozygotes spanning all

�1000 yeast essential genes enables comprehensive and

high-throughput screens for compounds targeting this highly

conserved gene set (Hoepfner et al., 2014; Lee et al., 2014).

Genetic Suppression and Modifier Effects
As noted above, genetic suppression is an extreme type of

positive GI (Figure 4A), such that the fitness defect of a query

mutant allele is partially or fully compensated by a suppressor

mutation. Suppressor mutations can either be intragenic,

occurring in the same gene as the original query mutation, or ex-
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tragenic, involving mutations in two different genes. In model

organisms, suppression interactions can be identified using

standard methods for identifying GIs between two pre-existing

mutant alleles, by isolating spontaneous or chemically-induced

mutations that rescue the fitness defect of a mutant of interest,

or by systematically overexpressing all genes in the genome

individually to identify genes that can rescue amutant phenotype

(dosage suppression).

Extragenic suppression interactions are extremely rich in

functional information compared to other interaction types,

and mostly occur between genes that have a close functional

connection, such as those encoding protein or pathway mem-

bers. These interactions often involve specific genetic alter-

ations, such as allele-specific interactions, and can be used to

assign function to uncharacterized genes, to order pathway

components and to understand phenotypic variability in natural

populations (see Matsui et al. [2017] for review). Mechanistically,

suppression GIs can involve gain-of-function phenotypes that

compensate for a missing activity in absence of the query

gene, or loss-of-function phenotypes that may antagonize query

gene function or eliminate toxicity associated with absence of

the query gene. For instance, in yeast, the growth defect associ-

ated with loss-of-function mutations in CDC25, which encodes

the guanine nucleotide exchange factor that activates Ras2,

can be suppressed by either gain-of-function mutations in

RAS2, or loss-of-function mutations in IRA1, which encodes

the GTPase activating protein that negatively regulates Ras2

(Figure 4B) (van Leeuwen et al., 2016).

In addition to functionally related mechanisms, suppression

can also occur via general control systems that are shared

among numerous genes with diverse functions (Magtanong

et al., 2011; Patra et al., 2017). General suppressors can

affect the translation of the query mutation (informational sup-

pressors), the expression of the query gene, the stability of its



gene-product, or the general animal physiology in multicellular

organisms. For example, loss-of-function mutations in mem-

bers of the mRNA or protein degradation pathways can rescue

the fitness defect of partial loss-of-function mutants in yeast by

increasing the levels of query mutant mRNA or protein (van

Leeuwen et al., 2016). Systematic studies of both genomic

and dosage suppression have highlighted the importance of

general mechanisms of suppression, which explain nearly half

of all suppressors identified for specific point mutant alleles in

yeast (Magtanong et al., 2011; Patra et al., 2017; van Leeuwen

et al., 2016).

Most studies of suppression have been performed in model

organisms, where the environment and other variables are highly

controlled. However, it is clear that genetic modifiers, including

those that show suppression GIs, complicate the connection be-

tween genotype and phenotype in natural outbred populations,

including humans (Riordan and Nadeau, 2017). Genetic modi-

fiers may influence the following: (1) the penetrance of a trait,

or the proportion of individuals carrying a particular causative

mutation that are phenotypically affected; and (2) trait expressiv-

ity, or the quantitative variation in phenotypic severity among in-

dividuals where a particular trait is penetrant. A notable example

of variable expressivity is the recent discovery of resilient individ-

uals that are healthy despite carrying mutations that have been

associated with severe early-onset Mendelian diseases (Chen

et al., 2016). A possible explanation is that these individuals carry

additional mutations elsewhere in the genome that can function

as suppressors and can overcome the detrimental effects of

the disease mutation. For instance, a dominant suppressor lo-

cus, DFNM1, has been identified that protects individuals that

are homozygous for the recessive non-syndromic deafness

locus DFNB26 against hearing loss (Riazuddin et al., 2000).

Similar suppressive interactions between mutations have been

described in cancer, whereby suppressor mutations increase

cell proliferation of otherwise slowly proliferating cancer cell

mutants that are associated with a poorer prognosis. For

example, loss of 53BP1 in tumors lacking a functional copy of

the tumor suppressor gene BRCA1 is usually associated with

aggressive tumors, low survival rates, and increased resistance

to chemotherapy (see Aly andGanesan [2011] for review). Mech-

anistically, this interaction represents the re-activation of the ho-

mologous recombination (HR) machinery, which is compro-

mised in the absence of BRCA1, by inactivating the negative

HR-regulator, 53BP1 (Aly and Ganesan, 2011).

In addition to functional suppressors, general suppression

mechanisms may occur among human genomic variants and

affect the expressivity or penetrance of disease. For instance,

as described above, a frequently observed mechanism of gen-

eral suppression in yeast involves loss-of-function mutations in

mRNA decay pathway members that can suppress partial

loss-of-function alleles of functionally diverse genes (van Leeu-

wen et al., 2016). Many diseases arise as a consequence of a

premature termination codon, and thus, partial inactivation of

nonsense-mediated mRNA decay (NMD) could be beneficial in

these cases by preventing degradation of the mutated mRNA

and allowing translation into a truncated peptide that could retain

residual activity (Miller and Pearce, 2014). Indeed, in certain

genetic disorders, such as Duchenne muscular dystrophy, treat-
ment options are focused on increasing translation of the

disease-associated mutant mRNA (Finkel, 2010).

These examples show the importanceofGIs in determining hu-

man disease severity and suggest that an understanding of ge-

netic suppression may shed light on the mechanisms underlying

the disease, which could highlight new therapeutic strategies.

Complex GIs
Complex GIs involve three or more genes and likely play a major

role in the genotype-to-phenotype relationship. For example,

while there are 18 million possible gene pairs in the yeast

genome, there are 36 billion gene triplets. Although the scope

of the problem is immense, there have been efforts to systemat-

ically quantify complex GIs in yeast, applying modifications of

methods used to survey double mutant GIs (Haber et al., 2013;

Kuzmin et al., 2018; Weinreich et al., 2013). Specifically, an

extension of the digenic multiplicative model (Baryshnikova

et al., 2010) has been utilized tomeasure yeast colony size for tri-

ple mutants, such that the expected fitness of a triple mutant ac-

counts for all three possible digenic interactions and single-

mutant effects, with any remaining deviation in fitness ascribed

to the simultaneous perturbation of all three genes (Kuzmin

et al., 2018). To survey the extent of triple mutant ‘‘interaction

space’’, a selected set of �200,000 triple yeast mutants was

examined for fitness defects along with their embedded double

mutants to identify 3,000 trigenic interactions (1.6% of tested

triplets) and 9,000 digenic interactions (2.3% of tested pairs).

This survey included combinations of both deletion alleles of

non-essential genes and conditional TS alleles of essential genes

(Kuzmin et al., 2018). Analysis of the triple-mutant GI profiles re-

vealed that, like digenic interactions, trigenic interactions tend to

involve functionally related genes, and the potential for a digenic

query strain to show trigenic interactions correlates with a num-

ber of quantitative features of the digenic network (Costanzo

et al., 2016). In particular, three digenic network features—the

negative GI score between two query genes, the interaction

degrees of the query genes, and the similarity of the query

gene digenic interaction profiles—correlate positively with tri-

genic interaction degree (Costanzo et al., 2016; Kuzmin et al.,

2018). Moreover, �2/3 of the trigenic interactions overlap with

a digenic interaction on the global GI network and negative

trigenic interactions are generally weaker than digenic inter-

actions, emphasizing the potential for reference double mutant

networks to reveal an underlying scaffold for complex GIs. How-

ever, compared to digenic profiles, trigenic profiles show a

significantly higher tendency to include genes involved in more

diverse biological processes, indicating that digenic query

strains are perturbed for a wider range of cellular functions

than single mutant query strains (Kuzmin et al., 2018).

While trigenic interactions occur less frequently than digenic

interactions, the relative number of possible triple mutant combi-

nations is 2,000-fold larger (see above), and modeling revealed

that the expected number of trigenic interactions in the yeast

genome is 100-fold more than the number of digenic interactions

(Kuzmin et al., 2018). The global yeast digenic network encom-

passes �500,000 negative GIs, while the trigenic network is

predicted to encompass�100million negative GIs. The expanse

of the global trigenic interaction network thus highlights the
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potential for complex GIs to affect the biology of inheritance. For

example, the relative frequency and strength of digenic and tri-

genic interactions suggest that deleterious trigenic interactions,

also termed Dobzhansky-Muller incompatibilities, play a major

role in the evolution of hybrid inviability and speciation (Foley

et al., 2013). Indeed, a trigenic interaction among three auto-

somal quantitative trait loci (QTLs) causes hybrid male sterility

between two fly species, D. persimilis and D. pseudoobscura

bogotana (Chang and Noor, 2010).

An important goal of genetic network analysis is to discover

GIs that are driven by natural variation, which growing evidence

suggests contribute to the genotype-to-phenotype relationship

for individuals. For example, an early study examined natural

variation influencing sporulation efficiency in offspring of a cross

between an oak yeast strain (YPS606) and a vineyard yeast strain

(BC187) (Gerke et al., 2006). In total, 5 QTLs, involving both cod-

ing and non-coding regions of transcription factor genes, were

linked to meiosis efficiency, and these loci participated in both

digenic and more complex GIs involving three and four loci.

In another study of yeast colony morphology, a cross between

two genetically diverse yeasts identified a complex GI involving

5 genes (Taylor and Ehrenreich, 2014). More general studies

have surveyed quantitative trait variation in �4,000 recombinant

offspring from a cross between the laboratory yeast strain

(S288c) and a vineyard strain (RM11) (Forsberg et al., 2017).

Genotyping of each offspring for �28,000 SNPs and phenotyp-

ing their association for 20 endpoint growth traits showed that

most extreme estimates from additive models of QTL effects

were often inaccurate and biased. However, incorporating GI

terms for pairwise and higher-order GIs significantly improved

the accuracy of predicting phenotypes from genotypes. New

theoretical approaches, which account for the combined effects

of deleterious and beneficial mutations, are being developed to

model the influence of such higher-order GIs on the dynamics

of evolution (Agarwala and Fisher, 2018).

In addition to QTL studies, systematic gene deletion analysis

can be used to explore GIs involving natural variation and their

role in the genotype-to-phenotype relationship. For example,

one study involved construction of a genome-wide deletion

collection in the yeast strain S1278b (Ryan et al., 2012), which

is capable of pseudohyphal growth and differs from the refer-

ence yeast (S288C) genome by thousands of SNP loci but

can efficiently mate and generate viable hybrid progeny. This

approach revealed a specific subset of genes that were essential

in one genetic background, but not the other, a phenotype

termed conditional essentiality (Dowell et al., 2010). Detailed

analysis of the genetics underlying the conditional essentiality

revealed that, while it can be associated with non-chromosomal

elements (Edwards et al., 2014) or digenic synthetic lethal inter-

actions, it often involves multiple modifiers associated with a

complex GI (Dowell et al., 2010). Another study genotyped

�1,400 progeny from a yeast cross of two genetically diverse

strains, scoring the phenotypes of deletions in 7 different chro-

matin remodeling genes across 10 environmental conditions

(Mullis et al., 2018), revealing that the gene deletions showed be-

tween �70 and �540 GIs, with �90% involving complex GIs.

While di- and trigenic interactions can be mapped genome-

wide using available tools and methods, the analysis of higher-
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order GIs becomes increasingly difficult and is perhaps

best examined using highly specific model systems. In partic-

ular, assessment of complex GIs involving mutations in a single

gene have been remarkably informative. In one study, the func-

tional consequences of mutations and combinations of muta-

tions in the green fluorescent protein from Aequorea victoria

(avGFP) expressed in bacteria were systematically assessed

(Sarkisyan et al., 2016). Both fluorescence and protein stability

were scored for 50,000 genotypes of avGFP, testing up to 15

missense mutations per sequence, revealing both simple and

complex GIs. Mutants with over 7 mutations showed a decrease

in the prevalence of GIs because the interactions started to over-

lap single gene and additive effects, indicating a saturation point

for higher-order GIs. Another recent study focused on variation in

a single tRNA gene in yeast to test the influence of GIs on gene

function (Domingo et al., 2018). Here, natural variation across

10 residues of a tRNA gene in post-whole-genome-duplication

yeast species was used as the foundation for building a library

of�5,000 tRNA genotypes involving 14 different nucleotide sub-

stitutions in the divergent residues, encompassing all possible

genotypes that differ from the Saccharomyces cerevisiae tRNA

sequence. This exhaustivemutagenesis captured up to 8th-order

interactions and revealed that the fitness phenotype associated

with a mutation is modified by the presence of other mutations in

the same tRNA molecule. In this specific case, each mutation

was capable of causing both detrimental and beneficial effects

in a substantial number of different genetic backgrounds.

Thus, to accurately predict the effect of a mutation on fitness,

it is imperative to measure mutation effects across different

genetic backgrounds and account for higher-order GIs. In this

context, a novel method to predict effects resulting from

mutations across diverse classes of RNA and protein has been

developed using a deep latent-variable model that incorporates

higher-order constraints, driven by complex GIs (Riesselman

et al., 2018).

These and other studies clearly illustrate the profound effect

that complex GIs can have on phenotypes and underscore the

need to understand complex GIs in our efforts to predict the con-

sequences of genome variation. In particular, complex GIs

should also be taken into account for efficient design of func-

tional synthetic genomes. Indeed, the minimal set of genes

required to sustain a living yeast cell is much larger than the

essential gene set due to both digenic and trigenic interactions

(Kuzmin et al., 2018). In fact, GIs were reported to constrain

the design of the minimal genome of Mycoplasma mycoides

bacteria (Hutchison et al., 2016). The construction of a viable

genome was possible only after resolving synthetic lethal GIs

involving non-essential genes (Hutchison et al., 2016). Thus,

the essential gene set which generally comprises 20% of the eu-

karyotic genome (Blomen et al., 2015; Hart et al., 2015; Wang

et al., 2015; Winzeler et al., 1999) is necessary, but not sufficient,

to construct a viable organism with a minimal genome due to the

phenotypic consequences of GIs on fitness.

Human GI Networks and Cancer
Breakthroughs in gene editing technologies over the past

decade have transformed mammalian cell genetics enabling

genome-scale, reverse genetic screens in diverse human cell



Figure 5. Strategies for mapping GIs in human cells
(A) A genome-scale gene editing approach (e.g using CRISPR-Cas9 and genome-wide gRNA library) to identify essential genes in a cancer cell-specific manner.
Different cancer cell lines are represented by colored nuclei. Additional genomic analysis is required to identify secondary mutations that interact with a particular
gene required for viability across subsets of cancer cell lines.
(B) Large-scale CRISPR-Cas9 screens to systematically introduce a second, defined mutation, presented by nuclei with different shades of gray, into a set of
isogenic cell lines, each carrying a stable mutation in a specific query gene of interest. Genes that result in a fitness defect when targeted in a particular query
mutant cell line identify potential GIs.
(C) A combinatorial approach enabling perturbation of two different genes, simultaneously within a specific cell line, to identify pairs of genes that, when mutated
in the same cell, result in an unexpected growth phenotype.
(D) Computational analysis of large-scale human genotype data that leverages pathway/functional module information as prior knowledge to aggregate genetic
variants to discover pairs of pathways/functional modules that result in increased or decreased disease risk when both mutated in defined group of individuals,
such as disease cohort (blue people), when compared to a control group, such as unaffected individuals (red people). Filled circles represent genes annotated to a
particular pathway (modified from (Wang et al., 2017b)).
line model systems. Similar to the impact of the arrayed collec-

tion of yeast deletion mutants (Winzeler et al., 1999), develop-

ment of high-complexity genome-scale CRISPR (clustered

regularly interspaced short palindromic repeats) libraries prom-

ise unprecedented functional characterization of the human

genome. For example, genome-wide pooled CRISPR and trans-

poson mutagenesis screens have defined a core set of essential

genes that are required for human cell proliferation and that

share functional, evolutionary, and physiological properties

with essential genes in other model systems (Blomen et al.,

2015; Hart et al., 2015; Wang et al., 2015). These studies have

laid the foundation for a new wave of functional genomics for

characterizing the role of essential genes, how gene essentiality

depends on genetic and tissue contexts, and how essential

genes evolve (Bartha et al., 2018; Rancati et al., 2018).

Continued genome-scale, loss-of-function genetic screens in

diverse cancer cell lines have begun to resolve the human essen-

tial gene set in greater detail (https://depmap.org/portal/)

(Rauscher et al., 2018; Tsherniak et al., 2017). In addition to

core essential genes, comparison of essential gene profiles iden-

tified subsets of genes that are specifically required for viability of
particular types of cancer cells (Hart et al., 2015; Tsherniak et al.,

2017; Wang et al., 2015, 2017a). These differential essential

genes are directly relevant to our understanding of GIs in hu-

mans. Cancer is a heterogeneous disease encompassing hun-

dreds of distinct subtypes and different genetic backgrounds.

Thus, similar to conditional essential genes in model organisms

(Dowell et al., 2010), the requirement of a given gene for viability

of some cancer cell lines, but not others, may be caused by un-

derlying modifiers and their GIs with the differential essential

gene or genetic variant(s) inherent to the particular cancer sub-

type (Figure 5A). Indeed, as predicted from genetic network anal-

ysis in yeast (Costanzo et al., 2016), cancer-cell-line-specific es-

sentiality profiles can uncover functional relationships because

genes belonging to the same pathway or protein complex are

often essential in the same subset of cancer cell lines (Pan

et al., 2018; Tsherniak et al., 2017; Wang et al., 2017a). More-

over, differential essential genes represent potential therapeutic

targets which, when genetically or chemically inhibited, can kill

cells that harbor a second cancer-specific alteration due to a

synthetic lethal interaction but spares otherwise identical cells

lacking the alteration (Ashworth and Lord, 2018), an idea
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originally proposed by Hartwell and colleagues (Hartwell et al.,

1997). For example, breast and ovarian cancer cells with muta-

tions in BRCA1 or BRCA2 are extremely susceptible to inhibi-

tion of poly(ADP)ribose polymerase 1 (PARP1) (Ashworth and

Lord, 2018).

Although a comprehensive understanding of the molecular

vulnerabilities of different cancer cell types will undoubtedly pro-

vide a powerful roadmap to guide GI studies and therapeutic

approaches, identifying relevant endogenous second site muta-

tion(s) that underlie differential essentiality remains a major chal-

lenge. Complementary approaches involve systematic testing

for GIs between defined pairs of genes. One approach uses

gene editing methods to systematically introduce a second mu-

tation into an engineered cell line carrying a stable ‘query’ muta-

tion of interest and subsequently identifies GIs based on relative

fitness of the resultant double mutant cells (Figure 5B) (Blomen

et al., 2015; Vizeacoumar et al., 2013). For example, RNA inter-

ference (RNAi) screens using pooled short-hairpin RNA (shRNA)

libraries led to the construction of a genome-scale genetic

network describing GIs associated with mutation of 5 genes in

an otherwise isogenic HCT116 cancer cell line (Vizeacoumar

et al., 2013). The resultant network was complex and comprised

of densely connected functional modules with individual genes

participating in multiple interactions. Similar to the networks

mapped for model organisms, most GIs in the cancer genetic

network identified connections between functionally related

genes, confirming that GIs identify functional relationships. The

cancer genetic network also uncovered examples of conserved

GIs, functions for uncharacterized genes, and targetable vulner-

abilities (Vizeacoumar et al., 2013). A more recent study used

transposon-mutagenesis to identify GIs for six different haploid

query mutant cell lines and map a preliminary genetic network

connecting human secretory and vesicle traffic pathways (Blo-

men et al., 2015).

A second approach for combinatorial GI screens involves

simultaneous perturbation of two or more genes in the same

cell (Figure 5C). Several RNAi and CRISPR technologies based

on multiplexing shRNAs and guide RNAs (gRNAs), respectively,

have been developed and applied to identify GIs among select

subsets of genes, including known drug targets, genes impli-

cated in cancer, and chromatin regulators (Bassik et al., 2013;

Boettcher et al., 2018; Du et al., 2017; Han et al., 2017; Najm

et al., 2018; Shen et al., 2017; Wong et al., 2016). While

genome-scale application of these combinatorial approaches

remains technically challenging, a recent study used CRISPR

interference (CRISPRi) to identify GIs among more than

220,000 pairs of genes suggesting that large-scale GI analysis

in human cells should be feasible (Horlbeck et al., 2018). Genes

belonging to the same pathway or complex are often connected

in the resultant network, demonstrating that human genetic net-

works, like yeast networks, will be rich in functional information

and provide a powerful approach for annotating human gene

function (Horlbeck et al., 2018).

Translating Insights from Model System Genetic
Networks to Human Populations
Understanding the complex relationship between genotype and

phenotype to ultimately predict trait heritability remains a pri-
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mary challenge of modern genetics. Application of next genera-

tion sequencing technologies to catalog millions of human

genetic variants combined with the implementation of electronic

health records and population-based registries (e.g., UK

BioBank, etc.) are generating unprecedented genomic and phe-

nomic resources to explore the genotype-phenotype problem in

the context of human disease (reviewed in Ritchie [2018]).

Genome-wide association studies (GWAS) have leveraged these

data to link thousands of genetic loci to numerous different traits.

As of 2018, the NHGRI (National HumanGenomeResearch Insti-

tute) EBI (European Bioinformatics Institute) Catalog reported >

50,000 associated loci for > 3000 unique traits (https://www.

ebi.ac.uk/gwas/). Despite statistical evidence linking a remark-

able number of candidate variants to a given disease, locus as-

sociation alone is not predictive of disease risk and there remains

a substantial disparity between the disease risk explained by the

genetic loci discovered by GWAS and the estimated total herita-

ble disease risk based on familial aggregation (Eichler et al.,

2010; Zuk et al., 2012; Zuk et al., 2014). Several reasons have

been proposed to explain this so-called ‘‘missing heritability,’’

including the existence of a large number of modifier loci, each

having a relatively small effect or rare variants that cannot be

easily detected using traditional approaches (Eichler et al.,

2010; Stahl et al., 2012; Zuk et al., 2014).

As discussed earlier, another possibility, supported by exper-

iments in yeast, is that GIs between different combinations of

common and/or rare genetic variants may be responsible for a

component of trait heritability (Forsberg et al., 2017; Zuk et al.,

2012). In fact, GIs are known to affect susceptibility to and/or

onset of several different complex diseases (Eichler et al.,

2010; Prabhu and Pe’er, 2012; Zuk et al., 2012). Unfortunately,

most methods lack the statistical power to detect GIs in large-

scale genotype datasets due to the vast number of possible

gene-gene combinations within the human genome. For

example, every individual in a typical GWAS is genotyped at

�500,000 different genetic loci. Thus, an unbiased and system-

atic search for GIs involves analysis of more than 1011 pairwise

gene combinations. Such an analysis is not feasible because

there is not enough statistical power to assess this many hypoth-

esis tests. Indeed, a theoretical study estimated through simula-

tions that as many as 500,000 subjects would be needed to

detect a significant GI between a single pair of genes under

reasonable assumptions (Zuk et al., 2012).

While it is statistically difficult to detect significant GIs between

individual human gene-gene pairs, the systematic genetic

network analyses in yeast and other model systems provide

important relevant insights. Specifically, as discussed earlier,

the yeast GI network has a highly organized structure in which

genes are grouped together to form discrete network modules,

and several studies have leveraged pathway or network enrich-

ment analyses to identify single loci associated with specific hu-

man diseases (Califano et al., 2012; Wang et al., 2010; Wu et al.,

2011; Zhang et al., 2014; Zuk et al., 2014). Importantly, the prev-

alence and coherence of negative interactions occurring within

the same functional module in a WPM structure, or between

pairs of modules in a BPM structure as observed in the yeast

genetic network (Bellay et al., 2011; Costanzo et al., 2016),

suggests that these features can be exploited to discover GIs
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between pairs of functional modules instead of individual gene-

gene or SNP-SNP pairs. In particular, the tendency of functional

modules to formWPM and BPM genetic network structures pro-

vides prior knowledge that can reduce the statistical burden

required to detect GIs in human populations by scanning human

genotyping datasets for an enrichment of pairs of variants that

occur within or between known pathways and complexes

(Figure 5D). A recent study used curated biological pathway

standards as prior information to aggregate genetic variants

and identify GIs between combinations of human pathways in

breast cancer cohorts that are associated with either increased

or decreased risk of disease (Wang et al., 2017b).

Ultimately, as has been done with yeast, sustained efforts to

systematically map GIs in model human cell lines will generate

a global genetic network for different human cells, providing a

powerful data-driven resource that defines a functional wiring di-

agram for humans. Exploiting GIs to define functional modules

and mapping their relationships should provide key knowledge

for enabling systematic discovery of pathway-level GIs from hu-

man genotyping data, leading to a new level of understanding of

human biology, enhancing our knowledge of the genotype to

phenotype relationship (Costanzo et al., 2016; Ma et al., 2018).
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Shaeri, F., Gebbia, M., Weile, J., et al. (2018). Mapping DNA damage-depen-

dent genetic interactions in yeast via party mating and barcode fusion ge-

netics. Mol. Syst. Biol. 14, e7985.

Dixon, S.J., Fedyshyn, Y., Koh, J.L., Prasad, T.S., Chahwan, C., Chua, G.,

Toufighi, K., Baryshnikova, A., Hayles, J., Hoe, K.L., et al. (2008). Significant

conservation of synthetic lethal genetic interaction networks between distantly

related eukaryotes. Proc. Natl. Acad. Sci. USA 105, 16653–16658.

Dobzhansky, T. (1946). Genetics of natural populations; recombination and

variability in populations of Drosophila pseudoobscura. Genetics 31, 269–290.

Domingo, J., Diss, G., and Lehner, B. (2018). Pairwise and higher-order genetic

interactions during the evolution of a tRNA. Nature 558, 117–121.

Dowell, R.D., Ryan, O., Jansen, A., Cheung, D., Agarwala, S., Danford, T.,

Bernstein, D.A., Rolfe, P.A., Heisler, L.E., Chin, B., et al. (2010). Genotype to

phenotype: a complex problem. Science 328, 469.

Drees, B.L., Thorsson, V., Carter, G.W., Rives, A.W., Raymond, M.Z., Avila-

Campillo, I., Shannon, P., and Galitski, T. (2005). Derivation of genetic interac-

tion networks from quantitative phenotype data. Genome Biol. 6, R38.

Du, D., Roguev, A., Gordon, D.E., Chen,M., Chen, S.H., Shales, M., Shen, J.P.,

Ideker, T., Mali, P., Qi, L.S., and Krogan, N.J. (2017). Genetic interaction

mapping in mammalian cells using CRISPR interference. Nat. Methods 14,

577–580.

Dutkowski, J., Kramer, M., Surma, M.A., Balakrishnan, R., Cherry, J.M.,

Krogan, N.J., and Ideker, T. (2013). A gene ontology inferred from molecular

networks. Nat. Biotechnol. 31, 38–45.

Edwards, M.D., Symbor-Nagrabska, A., Dollard, L., Gifford, D.K., and Fink,

G.R. (2014). Interactions between chromosomal and nonchromosomal ele-

ments reveal missing heritability. Proc. Natl. Acad. Sci. USA 111, 7719–7722.

Eichler, E.E., Flint, J., Gibson, G., Kong, A., Leal, S.M., Moore, J.H., and Na-

deau, J.H. (2010). Missing heritability and strategies for finding the underlying

causes of complex disease. Nat. Rev. Genet. 11, 446–450.

Finkel, R.S. (2010). Read-through strategies for suppression of nonsense mu-

tations in Duchenne/ Becker muscular dystrophy: aminoglycosides and atalu-

ren (PTC124). J. Child Neurol. 25, 1158–1164.

Fischer, B., Sandmann, T., Horn, T., Billmann, M., Chaudhary, V., Huber, W.,

and Boutros,M. (2015). Amap of directional genetic interactions in ametazoan

cell. eLife 4, 4.

Fisher, R.A. (1918). The correlation between relatives on the supposition of

Mendelian inheritance. Proc R Soc Endinburgh 52, 399–433.

Foley, B.R., Rose, C.G., Rundle, D.E., Leong, W., and Edmands, S. (2013).

Postzygotic isolation involves strong mitochondrial and sex-specific effects

in Tigriopus californicus, a species lacking heteromorphic sex chromosomes.

Heredity (Edinb) 111, 391–401.

Forsberg, S.K., Bloom, J.S., Sadhu, M.J., Kruglyak, L., and Carlborg, Ö.
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Guénolé, A., Srivas, R., Vreeken, K., Wang, Z.Z., Wang, S., Krogan, N.J.,

Ideker, T., and van Attikum, H. (2013). Dissection of DNA damage responses

using multiconditional genetic interaction maps. Mol. Cell 49, 346–358.

Haber, J.E., Braberg, H., Wu, Q., Alexander, R., Haase, J., Ryan, C., Lipkin-

Moore, Z., Franks-Skiba, K.E., Johnson, T., Shales, M., et al. (2013). System-

atic triple-mutant analysis uncovers functional connectivity between pathways

involved in chromosome regulation. Cell Rep. 3, 2168–2178.

Han, K., Jeng, E.E., Hess, G.T., Morgens, D.W., Li, A., and Bassik, M.C. (2017).

Synergistic drug combinations for cancer identified in a CRISPR screen for

pairwise genetic interactions. Nat. Biotechnol. 35, 463–474.
98 Cell 177, March 21, 2019
Harrison, R., Papp, B., Pál, C., Oliver, S.G., and Delneri, D. (2007). Plasticity of

genetic interactions in metabolic networks of yeast. Proc. Natl. Acad. Sci. USA

104, 2307–2312.

Hart, T., Chandrashekhar, M., Aregger, M., Steinhart, Z., Brown, K.R.,

MacLeod, G., Mis, M., Zimmermann, M., Fradet-Turcotte, A., Sun, S., et al.

(2015). High-Resolution CRISPR Screens Reveal Fitness Genes and Geno-

type-Specific Cancer Liabilities. Cell 163, 1515–1526.

Hartwell, L.H., Szankasi, P., Roberts, C.J., Murray, A.W., and Friend, S.H.

(1997). Integrating genetic approaches into the discovery of anticancer drugs.

Science 278, 1064–1068.

Hoepfner, D., Helliwell, S.B., Sadlish, H., Schuierer, S., Filipuzzi, I., Brachat, S.,

Bhullar, B., Plikat, U., Abraham, Y., Altorfer, M., et al. (2014). High-resolution

chemical dissection of a model eukaryote reveals targets, pathways and

gene functions. Microbiol. Res. 169, 107–120.

Horlbeck, M.A., Xu, A., Wang, M., Bennett, N.K., Park, C.Y., Bogdanoff, D.,

Adamson, B., Chow, E.D., Kampmann, M., Peterson, T.R., et al. (2018). Map-

ping the Genetic Landscape of Human Cells. Cell 174, 953–967 e922.

Hutchison, C.A., 3rd, Chuang, R.Y., Noskov, V.N., Assad-Garcia, N., Deerinck,

T.J., Ellisman, M.H., Gill, J., Kannan, K., Karas, B.J., Ma, L., et al. (2016).

Design and synthesis of a minimal bacterial genome. Science 351, aad6253.

Jaffe, M., Sherlock, G., and Levy, S.F. (2017). iSeq: A New Double-Barcode

Method for Detecting Dynamic Genetic Interactions in Yeast. G3 (Bethesda)

7, 143–153.

Jonikas, M.C., Collins, S.R., Denic, V., Oh, E., Quan, E.M., Schmid, V., Weibe-

zahn, J., Schwappach, B., Walter, P., Weissman, J.S., and Schuldiner, M.

(2009). Comprehensive characterization of genes required for protein folding

in the endoplasmic reticulum. Science 323, 1693–1697.

Kaiser, C.A., and Schekman, R. (1990). Distinct sets of SEC genes govern

transport vesicle formation and fusion early in the secretory pathway. Cell

61, 723–733.

Kelley, R., and Ideker, T. (2005). Systematic interpretation of genetic interac-

tions using protein networks. Nat. Biotechnol. 23, 561–566.

Kramer, M.H., Farre, J.C., Mitra, K., Yu, M.K., Ono, K., Demchak, B., Licon, K.,

Flagg, M., Balakrishnan, R., Cherry, J.M., et al. (2017). Active Interaction

Mapping Reveals the Hierarchical Organization of Autophagy. Mol Cell 65,

761–774.

Kuzmin, E., VanderSluis, B.,Wang,W., Tan, G., Deshpande, R., Chen, Y., Usaj,

M., Balint, A., Mattiazzi Usaj, M., van Leeuwen, J., et al. (2018). Systematic

analysis of complex genetic interactions. Science 360, 360.

Lee, A.Y., St Onge, R.P., Proctor, M.J., Wallace, I.M., Nile, A.H., Spagnuolo,

P.A., Jitkova, Y., Gronda, M., Wu, Y., Kim, M.K., et al. (2014). Mapping the

cellular response to small molecules using chemogenomic fitness signatures.

Science 344, 208–211.

Lehner, B., Crombie, C., Tischler, J., Fortunato, A., and Fraser, A.G. (2006).

Systematic mapping of genetic interactions in Caenorhabditis elegans

identifies common modifiers of diverse signaling pathways. Nat. Genet. 38,

896–903.

Ma, J., Yu, M.K., Fong, S., Ono, K., Sage, E., Demchak, B., Sharan, R., and

Ideker, T. (2018). Using deep learning to model the hierarchical structure

and function of a cell. Nat. Methods 15, 290–298.

Magtanong, L., Ho, C.H., Barker, S.L., Jiao, W., Baryshnikova, A., Bahr, S.,

Smith, A.M., Heisler, L.E., Choy, J.S., Kuzmin, E., et al. (2011). Dosage sup-

pression genetic interaction networks enhance functional wiring diagrams of

the cell. Nat. Biotechnol. 29, 505–511.

Mani, R., St Onge, R.P., Hartman, J.L., 4th, Giaever, G., and Roth, F.P. (2008).

Defining genetic interaction. Proc. Natl. Acad. Sci. USA 105, 3461–3466.
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