














Modeling simulates the divergent evolution
of paralogs with retained functional redundancy
We also explored functional redundancy and
paralog retention using in silico modeling in
an attempt to test two hypotheses. Under
the first hypothesis, the retained nonessential
paralog pairs with a high trigenic interac-
tion fraction—and thus a high functional
overlap—are inherently unstable over evolu-
tionary time and would eventually diverge
completely, losing any common functional-
ity. Under the alternative hypothesis, retained
paralogs may converge to an evolutionary
steady state, in which paralogs with retained

functional overlap cannot segregate certain
functional regions without a fitness cost. We
computationally generated “genes” of fixed
length, in which regions of random length
were assigned responsibility for a function,
and a random number of such functions was
generated for each gene, such that these func-
tional regions were allowed to overlap. Then
we duplicated each gene and began introduc-
ing random “degenerative” mutations, which
would render the affected paralog unable to
perform any function associated with the
mutated region (Fig. 7A). We discarded any
lineage as unfit when any one of the original

functions could not be carried out by at least
one sister, and continued simulating muta-
tions until the pair reached steady state and
could tolerate no additional mutations. The
extent of overlap of functions in each ran-
domly generated ancestral gene at the start of
paralog evolution provides a measure of their
initial structural and functional “entangle-
ment,” generating a baseline from which we
assessed their evolutionary trajectories (42).
These simulations revealed that for a large

fraction of paralog pairs, the mutation process
resulted in a singleton state with only one of
the sisters being retained. A sizable fraction of
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Fig. 6. Evolution of retained overlap due to evolutionary constraints acting
on duplicated gene sequences. (A) Schematic depiction of the analysis of
correlated evolutionary sequence changes across paralog sequences reflecting
evolutionary constraints on paralogs. Correlated rates of evolution for
specific columns in multiple sequence alignments for the pre-WGD homolog
and each paralog are denoted with a gray-to-black gradient, from low to high,
respectively. High correlation of position-specific evolutionary rate patterns
identifies residues with similar evolutionary constraints. Paralogs with cor-
related rates (rpar1:par2) that are greater than or equal to that of each paralog
and with the corresponding pre-WGD (rpar1:preWGD and rpar2:preWGD) were
designated as having a high correlation of position-specific evolutionary rate
pattern, and paralogs with correlated rates (rpar1:par2) that were less than
that of either paralog or both paralogs with the pre-WGD (rpar1:preWGD and/or
rpar2:preWGD) were designated as having a low correlation of position-specific
evolutionary rate pattern; r refers to the Pearson correlation coefficient be-
tween the respective sequences. (B) Examples of evolutionary rates for posi-
tions in the alignments for representative paralogs, showing a high correlation
of position-specific evolutionary rate patterns (MRS3-MRS4) or a low correlation

of position-specific evolutionary rate patterns (SKI7-HBS1). The position in the
alignment is plotted on the x axis; the rate of evolution at a particular position
divided by the average rate of evolution for all residues in the given sister paralog
is plotted on the y axis. The scale of the y axis has been fixed for each paralog
pair. Pfam domains are annotated. The MRS3-MRS4 alignment shows three
mitochondrial carrier repeats, each composed of two a helices (blue,
H1 and H2; red, H3 and H4; yellow, H5 and H6) followed by a characteristic
motif Pro-X-[Asp/Glu]-X-X-[Lys/Arg]-X-[Lys/Arg]-(20 to 30 residues)-
[Asp/Glu]-Gly-X-X-X-X-[Trp/Tyr/Phe]-[Lys/Arg]-Gly connecting each pair of
membrane-spanning domains by a loop. The SKI7-HBS1 alignment shows GTP
EF-Tu (blue) and C-terminal GTP EF-Tu (red) domains. The Hbs1-like N-terminal
motif lies outside of the alignment window. (C) Fraction of nonessential and
essential paralogs that show a high or low correlation of position-specific
evolutionary rate patterns. The paralogs with low and high trigenic interaction
fraction belong to the part of the distribution shown above; a trigenic interac-
tion fraction cutoff of 0.4 was used, based on negative interactions (t or e) <
–0.08, P < 0.05, and contains the set of paralogs that were used for the
correlated evolution analysis. Significance was assessed by Fisher exact test.
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simulations, however, ended with paralogs
in a stable steady state in which no more mu-
tations could be tolerated in either paralog,
while still maintaining viability. Analysis of
the simulation results revealed that the par-
ticular trajectory followed by a given paralog
pair was correlated with the level of functional
entanglement. Specifically, paralog pairs that
started with the highest levels of entangle-
ment immediately uponduplicationweremore
likely to revert to a singleton state. This sug-
gests that duplicated genes generally cannot
tolerate genetic perturbations when they lack
functionally independent regions (Fig. 7B and
fig. S9A). Among paralog pairs that were re-
tained at steady state, increased entangle-
ment at the point of duplication also led to a
broader bias in the functional asymmetry (ra-
tio of functional responsibilities) at steady
state. Thus, paralogs diverge asymmetrically
when they begin their evolutionary trajec-
tory with a protein sequence containing ex-

tensive entanglement (Fig. 7C and fig. S9, B
and C). Consistent with this observation from
our simulations, paralog evolution can show
asymmetric bias with respect to functional
redundancy (Fig. 4B).
Our modeling further revealed that as the

extent of the initial entanglement of paralogs
increased, so did the range of steady-state func-
tional overlap, which is represented by con-
strained domains at steady state (Fig. 7D and
fig. S9D). This suggests that the bimodal dis-
tribution of the trigenic interaction fraction
(Fig. 4A) may indicate that one subset ofWGD
paralogs diverged substantially so that each
of the sister paralogs has a distinct function,
and another subset of retained WGD paralogs
reached an evolutionary steady state despite
retained functional overlap, perhaps as a re-
sult of their structural and functional entan-
glement (Fig. 7E). For example, in the case of
SKI7-HBS1, Ski7 diverged from Hbs1 by losing
the Hbs1-like N-terminal motif and the EF-Tu

C-terminal domain while retaining a highly
diverged form of the EF-Tu GTP-binding do-
main, reflecting a modular, structural, and
functional organization of the protein (Fig. 6B).
On the other hand, MRS3 and MRS4 encode
mitochondrial carrier proteins dedicated to
the transport of small inorganic ions, and thus
their divergence would be predicted to occur
in specific residues that modulate ion speci-
ficity (Fig. 6B and fig. S7).
We propose that the evolutionary fate of

a duplicated gene can be governed by an
interplay of structural and functional entan-
glement (Fig. 7E). If a duplicated gene con-
tains several easily partitioned functions,
then it will most likely subfunctionalize; on
the other hand, an entangled pair, which is
highly restricted structurally and function-
ally, would have a tendency to revert to a
singleton state because one of the genes is
predicted to quickly become nonfunctional.
However, given multiple functions and an
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Fig. 7. In silico evolutionary model. (A) Schematic depiction of the in silico
evolutionary model. The pair evolves through random mutations until it reaches
an evolutionarily stable state that can sustain no further mutations without a loss
of function. Top, a pair at the start of the evolutionary trajectory; bottom, a
pair that achieves a division of labor with a retention of a common function (dark
blue blocks), the loss of which is prevented because it would compromise the
unique functions of each paralog (yellow, light blue, red). (B to D) Evolutionary
fates of paralogs with functional and structural entanglement. Paralogs were
generated to represent a range of overlapping functional domains at the onset of
their evolutionary trajectory, and the propensity to assume specific paralog
properties was quantified. In each case, the x axis represents bins of initial

functional overlap as a fraction of “gene” length at the start of the simulations
(< 10%, 30%, 50%, 70%, 90%, 100%, respectively); the y axis depicts the
propensities of paralogs to revert to a singleton state (B), evolve functional
asymmetry (C), or retain functional overlap at the evolutionary steady state (D).
(E) The structural and functional entanglement model of paralog divergence. A pair will
evolve by subfunctionalization if it is modular and is composed of partitionable
functions (left). A paralog pair that is very structurally and functionally entangled will
have a high probability of reversion to a singleton state because one of the sisters
will quickly degenerate (right). Paralogs with an intermediate level of entanglement at
the time of duplication will tend to partition some and retain some overlapping
functions, allowing for specialization of a common activity (center).
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intermediate level of entanglement, a gene
pair has a chance of partitioning or expand-
ing some nonoverlapping functions while
retaining others in common, and remaining
evolutionarily stable.

Discussion

The complex genetic interaction network of
dispensable WGD paralogs provides insight
into the long-standing question of why paral-
ogswith overlapping functions are retained on
an evolutionary time scale. By combining both
paralog-specific digenic interactions and the
paralog pair trigenic interactions in a single
metric, the trigenic interaction fraction, we
captured the spectrum of the retained func-
tional redundancy of dispensable paralogs.
Definitions of functionally redundant or

divergent paralogs using genetic interactions
appear to be consistent with classification
from protein-protein interaction studies (25).
For example, in the case where a paralog is
deleted and the sister responds by gaining
specific protein-protein interactions, then the
paralogs should compensate for each other’s
loss and thus should exhibit a high trigenic
interaction fraction. Indeed, four such paralogs
were examined in our study and they showed
a propensity to exhibit high trigenic inter-
action fractions. In particular, NUP53-ASM4
and OSH6-OSH7 showed high trigenic inter-
action fractions of 0.49 and 0.80, respectively.
On the other hand, some paralogs share protein-
protein interactions that are lost for both
paralogs when only one sister is deleted, which
suggests that although these paralogs may
cooperate, they do not fully compensate for
each other (25). We examined two such known
paralogs, PEX25-PEX27 and GSY1-GSY2, and
they exhibited low trigenic interaction frac-
tions of 0.19 and 0.25, respectively. Beyond
these examples, genetic interaction profiling
provides a functional readout and allows as-
sessment of pairs of genes that do not have
extensive protein-protein interaction profiles,
and therefore it provides a complementary view
of functional redundancy.
Our framework enabled us to interrogate

how WGD paralog evolution relates to the
evolutionary stability of retained common func-
tions and asymmetric functional divergence.
By computing the extent of correlated evolution
in sister paralogs (Fig. 6), we identified paralogs
that show highly correlated position-specific
evolutionary rate patterns and thus are under
strong evolutionary constraints to retain some
of their ancestral function, reflecting their
structural and functional entanglement. This
was further explored by our in silico model
(Fig. 7), which predicts that low levels of en-
tanglement are sufficient to drive asymmetric
subfunctionalization, whereas more complex
sequence-function relationships with higher
structural entanglement can result in fixation

of functional redundancy. Indeed, our mod-
eling shows that given some level of moder-
ate structural entanglement and the potential
for multifunctionality, a substantial fraction of
duplicate pairs converge to a steady state in
which they retain functional overlap. This re-
sult offers a possible explanation as to the per-
sistence of the functional overlap in paralogs,
which is not simply due to paralogs diverging
slowly from one another. We propose that the
results of our in silico modeling may explain
why the trigenic interaction fraction tends to
follow a bimodal distribution (Figs. 4A and 7).
The upper mode of the distribution repre-
sents the set of duplicate pairs that will likely
remain fixed in a partially functionally redun-
dant state, whereas the lower mode represents
duplicates that already have or are diverging
in function. Because ohnologs and homeologs
(42, 50) show the same distribution of trigenic
interaction fraction, this model of paralog di-
vergence and retention of functional redun-
dancy also likely applies to gene duplicates of
various ages and origins beyond WGD, which
may include small-scale duplicates.
In the simulation analysis, wemodeled func-

tions as being supported by contiguous se-
quence domains. However, because ourmodel
treats every position along a “gene” as statis-
tically independent, positions contributing
to a common function would not need to be
contiguous, and the conclusions would remain
the same for functional domains encoded by
discontinuous sequences. Therefore, the model
has the flexibility to capture a wide variety of
different physiological scenarios that might
display structural or functional entanglement,
such as independent modular domains; lin-
early distant contact sites within a secondary,
tertiary, or quaternary structure; or even reg-
ulatory regions beyond coding boundaries or
elsewhere within the genome. It is important
to note that this definition of structural and
functional entanglement is distinct from the
simple physical entanglement of proteins re-
stricted to the basic organization of polypep-
tide chains (63).
The question of why subfunctionalization

does not proceed to completion—leading to
fixation of duplicated genes with some spe-
cific functions, yet exhibiting a certain level of
functional redundancy—remains an outstand-
ingproblem in evolutionary biology. Constraints
that prevent complete divergence may allow
paralogs to retain the ability to function in
parallel biochemical pathways or macromolec-
ular complexes, thus resulting in a retention
of redundancy (18, 43, 64). More specifically,
despite functional divergence of independent
domains, incomplete subfunctionalization of
paralogs could be driven by a structurally and
functionally overlapping ancestral domain (35).
There are few existing models of duplicate evo-
lution that specifically address the existence

of redundancy in a steady state. There are
models that address different potential modes
of functional divergence, such as neo- or sub-
functionalization (39, 65). However, reasons
for the persistence of functional redundancy
have remained elusive. It is noteworthy that
previous simple computer simulations, which
incorporated mutation rates of genes and
the varying contribution of their functions to
overall fitness, have also identified situations
in which redundancy can be maintained in-
definitely (66–68). It has been shown that
paralogs that are selected to function as dis-
tinct homomers also retain the ability to het-
erodimerize, which may prevent functional
divergence between paralogs (69). In general,
our findings support fixation of overlapping
functional redundancy for a substantial pro-
portion of yeast paralogs.

Methods summary

To study the functional divergence of dupli-
cated genes, 240 double mutants and 480
corresponding single mutant control “query”
strains, involving dispensable WGD pairs in
the budding yeast Saccharomyces cerevisiae
S288C, were constructed using PCR-mediated
gene deletion followed by tetrad analysis.
Paralog 1 deletion was marked with natMX4,
while paralog 2 was deleted and replaced with
K. lactis URA3. Single mutant control strains
deleted for each one of the paralogs were also
markedwith the relevant controlmarker,which
was inserted at the benignHO locus. Query
strain fitness and query gene pair genetic in-
teractions were measured using high-density
synthetic genetic array (SGA) analysis. To ob-
tain trigenic interactions, double mutant query
strains along with their respective single mu-
tant control query strains were subjected to
trigenic-SGA analysis (t-SGA), which involves
a number of automated replica pinning steps.
Each query strain was mated to a diagnostic
array of 1200 strains, consisting of deletion mu-
tants of nonessential genes and temperature-
sensitive alleles of essential genes, providing a
representative view of the global digenic in-
teraction network. Briefly, the query and ar-
ray strainsweremated on richmedia,MATa/a
diploids were selected on media containing
G418 and clonNAT, sporulation was induced
by transferring to media with low levels of
nitrogen and carbon sources, andMATameiotic
haploid progeny was selected on haploid se-
lection media. Triple mutants were then se-
lected by first pinning onto haploid selection
media containing G418, lacking uracil, and
then onto haploid selection media containing
both G418 and clonNAT, lacking uracil. Every
query strain was screened in two independent
replicates.
Colony size was measured as a proxy for

fitness, and digenic and trigenic interactions
were scoredusing a quantitativemodel. Trigenic
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interactions were classified into novel versus
modified by overlapping with digenic inter-
actions. Functional information embedded
within digenic and trigenic interactions was
assessed by their enrichment with external
functional standards, such as protein-protein
interactions, subcellular localization, coexpres-
sion, and co-annotation. Trigenic interaction
fraction was calculated as the ratio of the neg-
ative trigenic interaction degree relative to the
total negative digenic and trigenic interaction
degree. Correlation of trigenic interaction
fraction with physiological and evolutionary
features included quantification of genetic
interactions within a paralog pair, asymmetry
of digenic interactions of members of each
paralog pair, and sequence divergence rate,
which was calculated as the raw difference be-
tween the fold-changes in substitutions per site
in post-WGD clades. The potential for paralog
induction during developmental programs
was assessed in (i) meiosis using published
meiotic mRNA-seq and ribosome profiling
datasets, (ii) filamentous growth using a pub-
lished measure of invasion, as well as (iii) glu-
cose starvation conditions using published gene
expression dataset. Dosage selection was esti-
mated using global digenic interaction profile
correlation similarity.
SAFE (Functional annotations based on the

Spatial Analysis of Functional Enrichment) of
the global genetic interaction profile similarity
network was used to annotate gene function.
Enrichment was calculated using the overlap
of trigenic interactions with a neighborhood
on the global digenic interaction similarity
network. Novel paralog function for ECM13-
YJR115W was interrogated using a drug sen-
sitivity spot assay onmedia containing benomyl,
and a liquid growth curve analysis on media
containing latrunculin B. Spindle morphology
was monitored by expressing Tub1-GFP, as
well as sfGFP fusion proteins of Ecm13 and
Yjr115w and imaging the resulting strains using
a spinning-disc confocal microscope. Novel
paralog function for STB2-STB6wasmonitored
by Bap2-GFP localization in stb2D stb6D double
mutant deletion strains and quantified using
CellProfiler.
To measure evolutionary constraints on paral-

ogs, evolutionary rates for specific amino acid
columns in multiple sequence alignments were
computed using the discrete gamma model of
protein evolution, as implemented in PAML for
the pre-WGD sequences and for each paralog
separately. Pearson correlation coefficients were
computed between the rates of the pre-WGD
clade to each paralog (pre-WGD&Paralog 1 and
pre-WGD and Paralog 2), and between the two
paralogs (Paralog 1 and Paralog 2) to classify
paralogs into those with low and high corre-
lation of position specific evolutionary rate
patterns. BioGRID was used to curate genetic
interactions for the mitochondrial carrier pro-

tein family. Paralog divergence was simulated
using a computational framework in which a
gene of fixed length was generated, annotated
with hypothetical functions and subjected to
random degenerative mutations at a constant
rate. Evolution to a steady state was achieved
when no more divergence mutations could be
toleratedwhilemaintaining viability. The result-
ing paralogs were binned according to each
pair’s initial level of structural entanglement,
which is the level of mutable positions within
a gene that carry out two or more functions to
quantify the number of paralogs that reverted
to singleton state, completely diverged or re-
tained functional overlap. For a more detailed
description of the experimental and compu-
tational analyses, refer to the supplementary
materials.
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how entanglement affects the evolutionary trajectory of gene duplications.
retained functional overlap, a condition the authors refer to as entanglement. On the basis of these results, they propose 
affected yeast fitness and were able to determine which genes have likely evolved new essential functions and which
Perspective by Ehrenreich). They examined how experimental deletions of one or two duplicated genes (paralogs) 

 (see theSaccharomyces cerevisiae explored the fate of duplicated gene function within the yeast et al.Kuzmin 
the fate of the duplicated genes: Will they be lost, evolve, or overlap in function within an organismal lineage or species? 

Gene duplication within an organism is a relatively common event during evolution. However, we cannot predict
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